Use of a RSM Turbulence Model for the Prediction of Velocity and Temperature Fields in a Mechanically Ventilated Room

Abstract Full-scale experimental and computational fluid dynamics (CFD) methods were used to investigate the velocity and temperature fields in a mechanically ventilated room. Detailed airflow fields were measured in three cases of ventilation air temperature: an isothermal case, a hot case and a cold case. The ventilation system created a round jet which developed near the ceiling. The experimental data were used to test two turbulence models: a first order k-ε turbulence model and a second order RSM turbulence model. The RSM model predicted the temperature and velocity fields better than the k-ε turbulence model. In particular, experimental global values of velocity and temperature were in good agreement with the RSM turbulence model. This model is recommended for simulation of ventilated enclosures with thermal effects.

[1]  Michel Havet,et al.  Computation of the airflow in a pilot scale clean room using K-ε turbulence models , 2002 .

[2]  P. Nielsen,et al.  The Selection of Turbulence Models for Prediction of Room Airflow , 1998 .

[3]  Frédéric Kuznik,et al.  Experimental and numerical study of a full scale ventilated enclosure : Comparison of four two equations closure turbulence models , 2007 .

[4]  Frédéric Kuznik,et al.  Experimental and numerical study of a mechanically ventilated enclosure with thermal effects , 2006 .

[5]  B. A. Kader Temperature and concentration profiles in fully turbulent boundary layers , 1981 .

[6]  R. Schiestel,et al.  Modélisation et simulation des écoulements turbulents , 1993 .

[7]  Hazim B. Awbi,et al.  Application of computational fluid dynamics in room ventilation , 1989 .

[8]  Thomas B. Gatski,et al.  Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach , 1990 .

[9]  Bernard Roux,et al.  Simulation of air flow in the IEA Annex 20 test room—validation of a simplified model for the nozzle diffuser in isothermal test cases , 2004 .

[10]  Catalin Teodosiu,et al.  Modélisation des systèmes techniques dans le domaine des équipements des bâtiments à l'aide des codes de type CFD , 2001 .

[11]  Derek Dunn-Rankin,et al.  Measurement and prediction of indoor air flow in a model room , 2003 .

[12]  J. Brau,et al.  Etude expérimentale des jets axisymétriques anisothermes horizontaux se développant près d'une paroi : application à la modélisation numérique des cavités ventilées , 2005 .

[13]  M. Wolfshtein The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient , 1969 .

[14]  K. Hanjalić,et al.  LES of Recirculating Flow Without Any Homogeneous Direction : A Dynamic One-Equation Subgrid Model , .

[15]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[16]  Frédéric Kuznik,et al.  Numerical and Experimental Investigation of a Mechanically Ventilated Room: The Impact of Inlet Boundary Conditions on CFD Modelling of the Ventilation System , 2005 .

[17]  Lars Davidson Implementation of a Large Eddy Simulation Method Applied to Recirculating Flow in a Ventilated Room , 1996 .