Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems

The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high-order modulation formats, the use of the soft-decision FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis.

[1]  Xiaodong Li,et al.  Bit-interleaved coded modulation with iterative decoding , 1997, IEEE Communications Letters.

[2]  I.B. Djordjevic,et al.  Next Generation FEC for High-Capacity Communication in Optical Transport Networks , 2009, Journal of Lightwave Technology.

[3]  Tobias Koch,et al.  High-SNR Asymptotics of Mutual Information for Discrete Constellations With Applications to BICM , 2014, IEEE Transactions on Information Theory.

[4]  Frank R. Kschischang,et al.  Staircase Codes With 6% to 33% Overhead , 2014, Journal of Lightwave Technology.

[5]  Angeliki Alexiou,et al.  Link performance models for system level simulations of broadband radio access systems , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[6]  Maan A. Kousa,et al.  Puncturing effects on turbo codes , 2002 .

[7]  S. Brink,et al.  Iterative demapping for QPSK modulation , 1998 .

[8]  Lutz H.-J. Lampe,et al.  Bit-Interleaved Coded Modulation with Mismatched Decoding Metrics , 2011, IEEE Transactions on Communications.

[9]  ITU-T Rec. G.975.1 (02/2004) Forward error correction for high bit-rate DWDM submarine systems , 2005 .

[10]  Lei Xu,et al.  Using LDPC-Coded Modulation and Coherent Detection for Ultra Highspeed Optical Transmission , 2007, Journal of Lightwave Technology.

[11]  Leszek Szczecinski,et al.  Exploiting UEP in QAM-based BICM: interleaver and code design , 2010, IEEE Transactions on Communications.

[12]  Alex Alvarado,et al.  High SNR bounds for the BICM capacity , 2011, 2011 IEEE Information Theory Workshop.

[13]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[14]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  C. Menyuk Nonlinear pulse propagation in birefringent optical fibers , 1987 .

[16]  Dariush Divsalar,et al.  Soft-input soft-output modules for the construction and distributed iterative decoding of code networks , 1998, Eur. Trans. Telecommun..

[17]  Erik Agrell,et al.  Improving soft FEC performance for higher-order modulations via optimized bit channel mappings. , 2014, Optics express.

[18]  Ming-Fang Huang,et al.  698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber , 2013 .

[19]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[20]  Magnus Almgren,et al.  A fading-insensitive performance metric for a unified link quality model , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[21]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[22]  Giuseppe Caire,et al.  Error probability analysis of bit-interleaved coded modulation , 2006, IEEE Transactions on Information Theory.

[23]  Alex Alvarado,et al.  Four-Dimensional Coded Modulation with Bit-Wise Decoders for Future Optical Communications , 2014, Journal of Lightwave Technology.

[24]  Laurent Schmalen,et al.  Estimation of Soft FEC Performance in Optical Transmission Experiments , 2011, IEEE Photonics Technology Letters.

[25]  Polina Bayvel,et al.  Experimental demonstration of 24-dimensional extended Golay coded modulation with LDPC , 2014, OFC 2014.

[26]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[27]  Henning Bulow,et al.  Coded modulation in optical communications , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[28]  Gianluigi Ferrari,et al.  Does the Performance of LDPC Codes Depend on the Channel? , 2006, IEEE Transactions on Communications.

[29]  I.B. Djordjevic,et al.  Projective geometry LDPC codes for ultralong-haul WDM high-speed transmission , 2003, IEEE Photonics Technology Letters.

[30]  J. Vogt,et al.  Improving the max-log-MAP turbo decoder , 2000 .

[31]  Richard D. Wesel,et al.  The universality of LDPC codes on wireless channels , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[32]  Laurent Schmalen Energy efficient FEC for optical transmission systems , 2014, OFC 2014.

[33]  Igal Sason,et al.  On Universal Properties of Capacity-Approaching LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[34]  Leszek Szczecinski,et al.  Distribution of L-values in gray-mapped M2-QAM: closed-form approximations and applications , 2009, IEEE Transactions on Communications.

[35]  Polina Bayvel,et al.  LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER? , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[36]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[37]  M. Nakazawa,et al.  2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz , 2014, OFC 2014.

[38]  Frank R Kschischang,et al.  Future Prospects for FEC in Fiber-Optic Communications , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  O. Ait Sab,et al.  Block turbo code performances for long-haul DWDM optical transmission systems , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[40]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective , 2008, IEEE Transactions on Information Theory.

[41]  Alexandre Graell i Amat,et al.  On the Information Loss of the Max-Log Approximation in BICM Systems , 2014, IEEE Transactions on Information Theory.

[42]  Raymond K. Kostuk,et al.  Low-density parity check codes and iterative decoding for long-haul optical communication systems , 2003 .

[43]  Igal Sason,et al.  On Universal LDPC Code Ensembles Over Memoryless Symmetric Channels , 2011, IEEE Transactions on Information Theory.

[44]  H. Bulow,et al.  Soft coded modulation for sensitivity enhancement of coherent 100-Gbit/s transmission systems , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[45]  I.B. Djordjevic,et al.  Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission , 2009, IEEE Photonics Technology Letters.

[46]  Laurent Schmalen,et al.  Experimental performance of 4D optimized constellation alternatives for PM-8QAM and PM-16QAM , 2014, OFC 2014.

[47]  I.B. Djordjevic,et al.  Low-density parity-check codes for 40-gb/s optical transmission systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Gerald Matz,et al.  On the generalized mutual information of BICM systems with approximate demodulation , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[49]  Alex Alvarado,et al.  Achievable rates for four-dimensional coded modulation with a bit-wise receiver , 2014, OFC 2014.

[50]  I.B. Djordjevic,et al.  Low-density parity check codes for long-haul optical communication systems , 2002, IEEE Photonics Technology Letters.

[51]  D.L. Wilson,et al.  Concatenated FEC experiment over 5000 km long straight line WDM test bed , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[52]  Andrew J. Viterbi,et al.  An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes , 1998, IEEE J. Sel. Areas Commun..

[53]  Georg Böcherer,et al.  Probabilistic signal shaping for bit-metric decoding , 2014, 2014 IEEE International Symposium on Information Theory.

[54]  Alex Alvarado,et al.  Optimal Alphabets and Binary Labelings for BICM at Low SNR , 2011, IEEE Transactions on Information Theory.

[55]  Johannes B. Huber,et al.  Coded modulation of polarization- and space-multiplexed signals , 2011, 2011 Asia Communications and Photonics Conference and Exhibition (ACP).

[56]  Seb J. Savory,et al.  Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation , 2015, Scientific Reports.

[57]  Leszek Szczecinski,et al.  Correction of Mismatched L-values in BICM Receivers , 2012, IEEE Transactions on Communications.

[58]  Ephraim Zehavi,et al.  8-PSK trellis codes for a Rayleigh channel , 1992, IEEE Trans. Commun..

[59]  Leszek Szczecinski,et al.  Bit-Interleaved Coded Modulation: Fundamentals, Analysis and Design , 2015 .

[60]  William E. Ryan,et al.  Punctured turbo-codes for BPSK/QPSK channels , 1999, IEEE Trans. Commun..

[61]  Alex Alvarado,et al.  On the Exact BER of Bit-Wise Demodulators for One-Dimensional Constellations , 2012, IEEE Transactions on Communications.

[62]  J. Kahn,et al.  Feedforward Carrier Recovery for Coherent Optical Communications , 2007, Journal of Lightwave Technology.

[63]  Amirhossein Ghazisaeidi,et al.  38.75 Tb/s transmission experiment over transoceanic distance , 2013 .