Proposed optical realisation of a two photon, four-qubit entangled χ state

The four-qubit states ∣ χ ij 〉 , exhibiting genuine multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its corresponding optical embodiment with which to prepare photon pairs in the ∣ χ ij 〉 states. Our approach uses hyper-entangled photon pairs, produced by the type-I spontaneous parametric down-conversion process in two contiguous nonlinear crystals, together with a set of simple linear-optical transformations. Our photon pairs are maximally hyper-entangled in both their polarisation and orbital angular momentum. After one of these daughter photons passes through our optical setup, we obtain photon pairs in the hyper-entangled state ∣ χ 00 〉 , and the ∣ χ ij 〉 states can be achieved by further simple transformations.

[1]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[2]  Li Dong,et al.  Teleportation of a general two-photon state employing a polarization-entangled $$\chi $$χ state with nondemolition parity analyses , 2016, Quantum Inf. Process..

[3]  C. H. Raymond Ooi,et al.  Computing the maximum violation of a Bell inequality is an NP-problem , 2016, Quantum Information Processing.

[4]  Yixian Yang,et al.  Multi-party quantum state sharing of an arbitrary multi-qubit state via $$\chi $$χ-type entangled states , 2014, Quantum Inf. Process..

[5]  Huai-Xin Lu,et al.  Extreme violation of local realism with a hyper-entangled four-photon-eight-qubit Greenberger-Horne-Zelinger state , 2014, Scientific Reports.

[6]  X. Yi,et al.  Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements , 2013 .

[7]  M. Luo,et al.  Quantum splitting an arbitrary three-qubit state with χ-state , 2013, Quantum Inf. Process..

[8]  Yixian Yang,et al.  Quantum steganography with large payload based on entanglement swapping of χ-type entangled states , 2011 .

[9]  A. Yao Angular momentum decomposition of entangled photons with an arbitrary pump , 2010, 1012.5021.

[10]  Stephen M. Barnett,et al.  Full characterization of the quantum spiral bandwidth of entangled biphotons , 2010, 1011.5970.

[11]  Gao Gan,et al.  A Protocol for Bidirectional Quantum Secure Communication Based on Genuine Four-Particle Entangled States , 2010 .

[12]  Yi-min Liu,et al.  QUANTUM STATE SPLITTING WITH YEO–CHUA GENUINE ENTANGLED STATE , 2010 .

[13]  Gan Gao Quantum key distribution by swapping the entanglement of χ-type state , 2010 .

[14]  Li-Xin Xia,et al.  Hierarchical quantum-information splitting , 2009, 0906.0826.

[15]  王丽萍,et al.  A Protocol for Bidirectional Quantum Secure Communication Based on Genuine Four-Particle Entangled States , 2010 .

[16]  Qiao-Yan Wen,et al.  Cryptanalysis and improvement of a DSQC using four-particle entangled state and entanglement swapping , 2009 .

[17]  Li Dong,et al.  Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping , 2009 .

[18]  Shou Zhang,et al.  Linear optical generation of multipartite entanglement with conventional photon detectors , 2009 .

[19]  L. Kuang,et al.  Production of genuine entangled states of four atomic qubits , 2009, 0903.0468.

[20]  Zhan-jun Zhang,et al.  Criterion for faithful teleportation with an arbitrary multiparticle channel , 2009, 0901.2784.

[21]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[22]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  X. Zha,et al.  Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state , 2007, quant-ph/0701146.

[25]  Vlatko Vedral,et al.  Introduction to Quantum Information Science (Oxford Graduate Texts) , 2006 .

[26]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[27]  Vlatko Vedral,et al.  Introduction to Quantum Information Science , 2006 .

[28]  Stig Stenholm,et al.  Quantum Approach to Informatics , 2005 .

[29]  N. Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[30]  S. Barnett,et al.  Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. , 2004, Physical review letters.

[31]  Haiqing Wei,et al.  Simplified measurement of the orbital angular momentum of single photons , 2002, quant-ph/0208146.

[32]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[33]  Jinhyoung Lee,et al.  Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.

[34]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[35]  W. Dür Multipartite entanglement that is robust against disposal of particles , 2001 .

[36]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[37]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[38]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[39]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[40]  Duncan A. Robertson,et al.  Rotational frequency shift of a light beam , 1998 .

[41]  Anders Karlsson,et al.  Quantum Teleportation using Three Particle Entanglement , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[42]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[43]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[44]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[45]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[47]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[48]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[49]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[50]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[51]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[52]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[53]  M. Redhead Incompleteness, nonlocality, and realism , 1987 .

[54]  J. Bennett,et al.  A critical evaluation of rhomb-type quarterwave retarders. , 1970, Applied optics.