Adapted and casual maximum principle and analytical solution to optimal control for stochastic multiplicative-noise systems with multiple input-delays

The main purpose of the paper is to provide the adapted and casual solution to the stochastic linear quadratic control problem for systems with multiple input-delays (SLQD). We introduce a special stochastic discrete-time maximum principle (SDMP) where instead of the admissible set consisting of the Fk-1-measurable control variable uk for any k, the admissible set is restricted to compose of the Fk-s-1-measurable with s ≥ 0 uk for any k. The introduced SDMP plays an important part in obtaining the adapted and casual controller. It should be noted that our derivation avoids the augmented argument, mainly establishes and takes advantage of the link between the optimal state and auxiliary variable.

[1]  Zhen Wu,et al.  The Maximum Principles for Stochastic Recursive Optimal Control Problems Under Partial Information , 2009, IEEE Transactions on Automatic Control.

[2]  Hans-Otfried Müller,et al.  Maximum principles for discrete-time nonlinear stochastic control systems , 1993 .

[3]  John B. Moore,et al.  Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati Equation , 2002, SIAM J. Control. Optim..

[4]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[5]  J. Bismut Linear Quadratic Optimal Stochastic Control with Random Coefficients , 1976 .

[6]  X. Chen,et al.  Discrete-time Indefinite LQ Control with State and Control Dependent Noises , 2002, J. Glob. Optim..

[7]  D. Hinrichsen,et al.  Stochastic H∞ , 1998 .

[8]  L. Mirkin,et al.  H∞ Control of systems with multiple I/O delays* , 2003 .

[9]  Joël Blot,et al.  An infinite-horizon stochastic discrete-time Pontryagin principle , 2009 .

[10]  Akira Kojima,et al.  Formulas on Preview and Delayed $H^{\infty}$ Control , 2006, IEEE Transactions on Automatic Control.

[11]  L. Mirkin,et al.  H/sup /spl infin// control and estimation with preview-part II: fixed-size ARE solutions in discrete time , 2005, IEEE Transactions on Automatic Control.

[12]  H. Kushner Necessary conditions for continuous parameter stochastic optimization problems , 1972 .

[13]  Zhen Wu,et al.  Maximum principle for the stochastic optimal control problem with delay and application , 2010, Autom..

[14]  Bor-Sen Chen,et al.  On stabilizability and exact observability of stochastic systems with their applications , 2023, Autom..

[15]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[16]  D. Hinrichsen,et al.  Stochastic $H^\infty$ , 1998 .

[17]  Arjan van der Schaft,et al.  Open Problems in Mathematical Systems and Control Theory , 1999 .

[18]  Bor-Sen Chen,et al.  Generalized Lyapunov Equation Approach to State-Dependent Stochastic Stabilization/Detectability Criterion , 2008, IEEE Transactions on Automatic Control.

[19]  Lihua Xie,et al.  Stochastic linear quadratic regulation for discrete-time linear systems with input delay , 2009, Autom..

[20]  Huanshui Zhang,et al.  Linear quadratic regulation for linear time-varying systems with multiple input delays part I: discrete-time case , 2005, 2005 International Conference on Control and Automation.

[21]  L. Mirkin,et al.  H/sup /spl infin// control of systems with multiple I/O delays via decomposition to adobe problems , 2005, IEEE Transactions on Automatic Control.

[22]  Igor V. Evstigneev,et al.  Stochastic models of control and economic dynamics , 1987 .

[23]  A. Bensoussan Lectures on stochastic control , 1982 .