Trans-saccadic interactions in human parietal and occipital cortex during the retention and comparison of object orientation

The cortical sites for the trans-saccadic storage and integration of visual object features are unknown. Here, we used a variant of fMRI-Adaptation where subjects fixated to the left or right of a briefly presented visual grating, maintained fixation or saccaded to the opposite side, then judged whether a re-presented grating had the same or different orientation. fMRI analysis revealed trans-saccadic interactions (different > same orientation) in a visual field-insensitive cluster within right supramarginal gyrus. This cluster was located at the anterolateral pole of the parietal eye field (identified in a localizer task). We also observed gaze centered, field-specific interactions (same > different orientation) in an extrastriate cluster overlapping with putative 'V4'. Based on these data and our literature review, we conclude that these supramarginal and extrastriate areas are involved in the retention, spatial updating, and evaluation of object orientation information across saccades.

[1]  H. Helmholtz Handbuch der physiologischen Optik , 2015 .

[2]  J Douglas Crawford,et al.  Transcranial Magnetic Stimulation over Posterior Parietal Cortex Disrupts Transsaccadic Memory of Multiple Objects , 2008, The Journal of Neuroscience.

[3]  J. Douglas Crawford,et al.  Visual memory capacity in transsaccadic integration , 2007, Experimental Brain Research.

[4]  J Douglas Crawford,et al.  Role of early visual cortex in trans-saccadic memory of object features. , 2015, Journal of vision.

[5]  J. Haxby,et al.  Functional anatomy of pursuit eye movements in humans as revealed by fMRI. , 1999, Journal of neurophysiology.

[6]  J Douglas Crawford,et al.  TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects. , 2010, Cerebral cortex.

[7]  Nancy Kanwisher,et al.  Cerebral Cortex doi:10.1093/cercor/bhr357 Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location , 2011 .

[8]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[9]  A. Roe,et al.  Functional organization for color and orientation in macaque V4 , 2010, Nature Neuroscience.

[10]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[11]  Kalanit Grill-Spector,et al.  Selectivity of Adaptation in Single Units: Implications for fMRI Experiments , 2006, Neuron.

[12]  Fred Henrik Hamker,et al.  V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field , 2006, Neural Networks.

[13]  D. E. Irwin Integrating Information Across Saccadic Eye Movements , 1996 .

[14]  Tirin Moore,et al.  Dynamic sensitivity of area V4 neurons during saccade preparation , 2009, Proceedings of the National Academy of Sciences.

[15]  Jeremy Freeman,et al.  Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex , 2013, The Journal of Neuroscience.

[16]  P. E. Hallett,et al.  Saccadic eye movements to flashed targets , 1976, Vision Research.

[17]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[18]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[19]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[20]  Amir Kheradmand,et al.  Transcranial magnetic stimulation (TMS) of the supramarginal gyrus: a window to perception of upright. , 2015, Cerebral cortex.

[21]  Justin L. Gardner,et al.  Modulation of Visual Responses by Gaze Direction in Human Visual Cortex , 2013, The Journal of Neuroscience.

[22]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[24]  K. Rayner Eye movements in reading and information processing. , 1978, Psychological bulletin.

[25]  E A Cabanis,et al.  Location of the human posterior eye field with functional magnetic resonance imaging. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[26]  Yifeng Zhou,et al.  Limited transfer of long-term motion perceptual learning with double training. , 2015, Journal of vision.

[27]  Nancy Kanwisher,et al.  Retinotopic memory is more precise than spatiotopic memory , 2012, Proceedings of the National Academy of Sciences.

[28]  Carol L Colby,et al.  Shape selectivity and remapping in dorsal stream visual area LIP. , 2014, Journal of neurophysiology.

[29]  Joseph T. Devlin,et al.  Supramarginal gyrus involvement in visual word recognition , 2009, Cortex.

[30]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[31]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[32]  Tirin Moore,et al.  Global Selection of Saccadic Target Features by Neurons in Area V4 , 2014, The Journal of Neuroscience.

[33]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[34]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[35]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[36]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[37]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[38]  David C. Burr,et al.  Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention , 2011, PloS one.

[39]  R. Goebel,et al.  The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. , 1999, Cerebral cortex.

[40]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[41]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[42]  L E Mays,et al.  Saccades are spatially, not retinocentrically, coded. , 1980, Science.

[43]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[44]  J Douglas Crawford,et al.  Cortical mechanisms for trans-saccadic memory and integration of multiple object features , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  J. Crawford,et al.  Transsaccadic integration of visual features in a line intersection task , 2006, Experimental Brain Research.

[46]  T P Gutteling,et al.  fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements. , 2009, Journal of neurophysiology.

[47]  Ehud Zohary,et al.  Multiple Reference Frames for Saccadic Planning in the Human Parietal Cortex , 2011, The Journal of Neuroscience.

[48]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[49]  M. Ernst,et al.  The statistical determinants of adaptation rate in human reaching. , 2008, Journal of vision.

[50]  M. Hayhoe,et al.  Integration of Form across Saccadic Eye Movements , 1991, Perception.

[51]  K. Rayner,et al.  Is visual information integrated across saccades? , 1983, Perception & psychophysics.

[52]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[53]  G. Boynton,et al.  Adaptation: from single cells to BOLD signals , 2006, Trends in Neurosciences.

[54]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[55]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[56]  B. Ardekani,et al.  Functional magnetic resonance imaging of brain activity in the visual oddball task. , 2002, Brain research. Cognitive brain research.

[57]  Donald M. MacKay,et al.  Visual Stability and Voluntary Eye Movements , 1973 .

[58]  Xiaogang Yan,et al.  Specificity of Human Parietal Saccade and Reach Regions during Transcranial Magnetic Stimulation , 2010, The Journal of Neuroscience.

[59]  C. Connor,et al.  Three-dimensional orientation tuning in macaque area V4 , 2002, Nature Neuroscience.

[60]  P. Hagoort,et al.  The suppression of repetition enhancement: A review of fMRI studies , 2013, Neuropsychologia.

[61]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[62]  Martin Eimer,et al.  TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence. , 2011, Journal of neurophysiology.

[63]  J. D. Crawford,et al.  The effects of TMS over dorsolateral prefrontal cortex on trans-saccadic memory of multiple objects , 2014, Neuropsychologia.