Spectra of Husimi cacti: exact results and applications.

Starting from exact relations for finite Husimi cacti we determine their complete spectra to very high accuracy. The Husimi cacti are dual structures to the dendrimers but, distinct from these, contain loops. Our solution makes use of a judicious analysis of the normal modes. Although close to those of dendrimers, the spectra of Husimi cacti differ. From the wealth of applications for measurable quantities which depend only on the spectra, we display for Husimi cacti the behavior of the fluorescence depolarization under quasiresonant Forster energy transfer.

[1]  V. Bierbaum,et al.  Localization of coherent exciton transport in phase space. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  V. Bierbaum,et al.  Coherent dynamics on hierarchical systems , 2006, cond-mat/0610686.

[3]  Alexander Blumen,et al.  Energy transfer and trapping in regular hyperbranched macromolecules , 2005 .

[4]  Alexander Blumen,et al.  Monitoring energy transfer in hyperbranched macromolecules through fluorescence depolarization , 2005 .

[5]  A. A. Gurtovenko,et al.  Generalized Gaussian Structures: Models for Polymer Systems with ComplexTopologies , 2005 .

[6]  A. Zippelius,et al.  Dynamics of gelling liquids: a short survey , 2004, cond-mat/0412101.

[7]  A. A. Gurtovenko,et al.  Relaxation of Copolymeric Dendrimers Built from Alternating Monomers , 2004 .

[8]  Alexander Blumen,et al.  Generalized Vicsek Fractals: Regular Hyperbranched Polymers , 2004 .

[9]  T. Koslowski,et al.  Dynamics and scaling of polymer networks: Vicsek fractals and hydrodynamic interactions , 2003 .

[10]  Alexander Blumen,et al.  Dynamics of dendrimer-based polymer networks , 2003 .

[11]  C. von Ferber,et al.  Dynamics of Vicsek fractals, models for hyperbranched polymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  T. Koslowski,et al.  Dynamics of deterministic fractal polymer networks: Hydrodynamic interactions and the absence of scaling , 2003 .

[13]  Alexander Blumen,et al.  Multifractal spectra and the relaxation of model polymer networks , 2002 .

[14]  J. Mellema,et al.  Singular behavior of Rouse-like spectra , 1999 .

[15]  Joseph Klafter,et al.  Geometric versus Energetic Competition in Light Harvesting by Dendrimers , 1998 .

[16]  Chengzhen Cai,et al.  Rouse Dynamics of a Dendrimer Model in the ϑ Condition , 1997 .

[17]  Raoul Kopelman,et al.  Dendrimers as Controlled Artificial Energy Antennae , 1997 .

[18]  Wu,et al.  Dynamics of a Vicsek fractal: The boundary effect and the interplay among the local symmetry, the self-similarity, and the structure of the fractal. , 1994, Physical review. B, Condensed matter.

[19]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[20]  Wu,et al.  Real space Green's function approach to vibrational dynamics of a Vicsek fractal. , 1992, Physical review letters.

[21]  Kapral,et al.  Coupled maps on fractal lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[23]  M. Cates Statics and dynamics of polymeric fractals , 1984 .

[24]  H. Kellerer,et al.  Anisotropic excitation transfer to acceptors randomly distributed on surfaces. , 1984, Biophysical journal.

[25]  R. Rammal,et al.  Spectrum of harmonic excitations on fractals , 1984 .

[26]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[27]  Vasudev M. Kenkre,et al.  Exciton Dynamics in Molecular Crystals and Aggregates , 1982 .