Gradient-based maximal convergence rate iterative method for solving linear matrix equations

This paper is concerned with numerical solutions to general linear matrix equations including the well-known Lyapunov matrix equation and Sylvester matrix equation as special cases. Gradient based iterative algorithm is proposed to approximate the exact solution. A necessary and sufficient condition guaranteeing the convergence of the algorithm is presented. A sufficient condition that is easy to compute is also given. The optimal convergence factor such that the convergence rate of the algorithm is maximized is established. The proposed approach not only gives a complete understanding on gradient based iterative algorithm for solving linear matrix equations, but can also be served as a bridge between linear system theory and numerical computing. Numerical example shows the effectiveness of the proposed approach.

[1]  G. Fernández-Anaya,et al.  Unsolved Problems in Mathematical Systems and Control Theory , 2005, IEEE Transactions on Automatic Control.

[2]  David J. Evans,et al.  AOR type iterations for solving preconditioned linear systems , 2005, Int. J. Comput. Math..

[3]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[4]  James Lam,et al.  Robust eigenvalue assignment in second-order systems: A gradient flow approach , 1997 .

[5]  Robert R. Bitmead,et al.  On the solution of the discrete-time Lyapunov matrix equation in controllable canonical form , 1979 .

[6]  Volker Mehrmann,et al.  Disturbance Decoupling for Descriptor Systems by State Feedback , 2000, SIAM J. Control. Optim..

[7]  Wen-Wei Lin,et al.  Robust Partial Pole Assignment for Vibrating Systems With Aerodynamic Effects , 2006, IEEE Transactions on Automatic Control.

[8]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[9]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[10]  James Lam,et al.  Pole assignment with optimal spectral conditioning , 1997 .

[11]  Paul Van Dooren,et al.  A novel numerical method for exact model matching problem with stability , 2006, Autom..

[12]  Yuguang Fang,et al.  New estimates for solutions of Lyapunov equations , 1997, IEEE Trans. Autom. Control..

[13]  David J. Evans,et al.  Chebyshev acceleration for SOR-like method , 2005, Int. J. Comput. Math..

[14]  Guang-Ren Duan,et al.  Parametric approach for the normal Luenberger function observer design in second-order descriptor linear systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[15]  Guang-Ren Duan,et al.  Solution to the second-order Sylvester matrix equation MVF/sup 2/+DVF+KV=BW , 2006, IEEE Transactions on Automatic Control.

[16]  James Lam,et al.  Pole assignment with eigenvalue and stability robustness , 1999 .

[17]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[18]  Feng Ding,et al.  On Iterative Solutions of General Coupled Matrix Equations , 2006, SIAM J. Control. Optim..

[19]  G. Duan Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..

[20]  Guang-Ren Duan,et al.  On the generalized Sylvester mapping and matrix equations , 2008, Syst. Control. Lett..

[21]  Bin Zhou,et al.  Parametric Approach for the Normal Luenberger Function Observer Design in Second-order Linear Systems , 2006, CDC.

[22]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[23]  Igor E. Kaporin,et al.  Explicitly preconditioned conjugate gradient method for the solution of unsymmetric linear systems , 1992 .

[24]  Delin Chu,et al.  Numerically Reliable Computing for the Row by Row Decoupling Problem with Stability , 2001, SIAM J. Matrix Anal. Appl..

[25]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[26]  Peter Benner,et al.  Factorized Solution of Lyapunov Equations Based on Hierarchical Matrix Arithmetic , 2006, Computing.

[27]  J. Heinen,et al.  A technique for solving the extended discrete Lyapunov matrix equation , 1972 .

[28]  Guang-Ren Duan,et al.  On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..

[29]  Zongli Lin,et al.  Unified Gradient Approach to Performance Optimization Under a Pole Assignment Constraint , 2002 .

[30]  Tatjana Stykel,et al.  Numerical solution and perturbation theory for generalized Lyapunov equations , 2002 .

[31]  Bin Zhou,et al.  A new solution to the generalized Sylvester matrix equation AV-EVF=BW , 2006, Syst. Control. Lett..

[32]  A. Laub,et al.  Approximate solution of large sparse Lyapunov equations , 1994, IEEE Trans. Autom. Control..

[33]  Vincent D. Blondel,et al.  Open Problems in Mathematical Systems and Control Theory , 2011 .

[34]  James Lam,et al.  A gradient flow approach to the robust pole-placement problem , 1995 .

[35]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[36]  Shankar P. Bhattacharyya,et al.  Controllability, observability and the solution of AX - XB = C , 1981 .

[37]  G. Duan,et al.  An explicit solution to the matrix equation AX − XF = BY , 2005 .

[38]  Tongxiang Gu,et al.  Multiple search direction conjugate gradient method I: methods and their propositions , 2004, Int. J. Comput. Math..

[39]  Dereck S. Meek,et al.  The numerical solution of A'Q+QA = -C , 1977 .

[40]  Daniel W. C. Ho,et al.  Regularization of Singular Systems by Derivative and Proportional Output Feedback , 1998, SIAM J. Matrix Anal. Appl..

[41]  Nancy Nichols,et al.  Minimum norm regularization of descriptor systems by mixed output feedback , 1999 .

[42]  W. Niethammer,et al.  SOR for AX−XB=C , 1991 .