The Problem with Determining Atomic Structure at the Nanoscale

Emerging complex functional materials often have atomic order limited to the nanoscale. Examples include nanoparticles, species encapsulated in mesoporous hosts, and bulk crystals with intrinsic nanoscale order. The powerful methods that we have for solving the atomic structure of bulk crystals fail for such materials. Currently, no broadly applicable, quantitative, and robust methods exist to replace crystallography at the nanoscale. We provide an overview of various classes of nanostructured materials and review the methods that are currently used to study their structure. We suggest that successful solutions to these nanostructure problems will involve interactions among researchers from materials science, physics, chemistry, computer science, and applied mathematics, working within a “complex modeling” paradigm that combines theory and experiment in a self-consistent computational framework.

[1]  Leslie J. Allen,et al.  Three-dimensional imaging of individual hafnium atoms inside a semiconductor device , 2005 .

[2]  Songye Chen,et al.  Ultrafast electron crystallography: transient structures of molecules, surfaces, and phase transitions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Kuei-Fang Hsu,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[4]  John J. Rehr,et al.  Progress in the theory and interpretation of XANES , 2005 .

[5]  C. L. Jia,et al.  Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics , 2003, Science.

[6]  I. Levin,et al.  Effects of local atomic order on the pre-edge structure in the Ti K x-ray absorption spectra of perovskite CaTi 1 − x Zr x O 3 , 2006 .

[7]  Angus I. Kirkland,et al.  Materials Advances through Aberration-Corrected Electron Microscopy , 2006 .

[8]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[9]  Nobuo Tanaka,et al.  Direct observation of six-membered rings in the upper and lower walls of a single-wall carbon nanotube by spherical aberration-corrected HRTEM. , 2006, Nano letters.

[10]  Brian H. Toby,et al.  Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials , 1992 .

[11]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[12]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[13]  Ian McNulty,et al.  Fluctuation microscopy: a probe of medium range order , 2005 .

[14]  Paul A. Midgley,et al.  Measurement of three-dimensional intensity data in electron diffraction by the precession technique , 1998 .

[15]  De Nyago Tafen,et al.  Experimentally constrained molecular relaxation: The case of glassy Ge Se 2 , 2005 .

[16]  John M. Cowley,et al.  Applications of electron nanodiffraction , 2004 .

[17]  N Binsted,et al.  Applications of combined EXAFS and powder diffraction analysis in solid state chemistry. , 2001, Journal of synchrotron radiation.

[18]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[19]  S J L Billinge,et al.  Structure of intercalated Cs in zeolite ITQ-4: an array of metal ions and correlated electrons confined in a pseudo-1D nanoporous host. , 2002, Physical review letters.

[20]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[21]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[22]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[23]  Malcolm L. H. Green,et al.  Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. , 2006, Physical review letters.

[24]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[25]  Suntharampillai Thevuthasan,et al.  Direct Observation of Substitutional Au Atoms in SrTiO3 , 2004 .

[26]  G. Armatas,et al.  Hexagonal Mesoporous Germanium , 2006, Science.

[27]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[28]  Martin T. Dove,et al.  Application of the reverse Monte Carlo method to crystalline materials , 2001 .

[29]  J. King,et al.  Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus , 2006, Nature.

[30]  H Ihee,et al.  Direct imaging of transient molecular structures with ultrafast diffraction. , 2001, Science.

[31]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[32]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[33]  Raymond Withers,et al.  Disorder, structured diffuse scattering and the transmission electron microscope , 2005 .

[34]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[35]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[36]  Kenji Hiraga,et al.  Framework Determination of a Polytype of Zeolite Beta by Using Electron Crystallography , 2002 .

[37]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[38]  Mietek Jaroniec,et al.  Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure , 2000 .

[39]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[40]  R Vuilleumier,et al.  Recombination of photodissociated iodine: a time-resolved x-ray-diffraction study. , 2006, The Journal of chemical physics.

[41]  H. Eisaki,et al.  Interplay of electron–lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ , 2006, Nature.

[42]  J L Hutchison,et al.  A composite method for the determination of the chirality of single walled carbon nanotubes , 2003, Journal of microscopy.

[43]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[44]  Rick P. Millane,et al.  RECONSTRUCTING SYMMETRIC IMAGES FROM THEIR UNDERSAMPLED FOURIER INTENSITIES , 1997 .

[45]  Alexej Jerschow,et al.  Solid-state NMR spectroscopic methods in chemistry. , 2002, Angewandte Chemie.

[46]  Louis E. Brus,et al.  SYNTHESIS, STABILIZATION, AND ELECTRONIC STRUCTURE OF QUANTUM SEMICONDUCTOR NANOCLUSTERS , 1989 .