Measurements and calculations of CO2-broadening and shift coefficients of water vapor transitions in the 5150–5550 cm−1 spectral region

[1]  A. Dudaryonok,et al.  Calculation of Broadening Coefficients of Sulfur Dioxide Lines by Carbon Dioxide in the ν1 + ν3A-type Band at Room Temperature , 2023, Atmospheric and Oceanic Optics.

[2]  V. I. Starikov,et al.  Measurements of air-broadening parameters of water vapour transitions in the 5090–7490 cm−1 spectral region , 2023, Molecular Physics.

[3]  V. M. Deichuli,et al.  Broadening and Shift Coefficients of Water Absorption Lines Induced by Carbon Dioxide Pressure near 2.7 μm , 2022, Atmospheric and Oceanic Optics.

[4]  V. M. Deichuli,et al.  FT spectroscopy of water vapor in the 0.9 mkm transparency window , 2022, Journal of Quantitative Spectroscopy and Radiative Transfer.

[5]  V. M. Deichuli,et al.  Water vapor absorption line parameters in the 6760–7430 cm–1 region for application to CO2-rich planetary atmosphere , 2022, Journal of Quantitative Spectroscopy and Radiative Transfer.

[6]  L. Sinitsa,et al.  Measurements of N2-broadening and -shifting parameters of the water vapor spectral lines in the 19,560–19,920 cm−1 region using FT-spectrometer with LED source , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[7]  L. Régalia,et al.  Laboratory measurements and calculations of line shape parameters of the H2O–CO2 collision system , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[8]  L. Sinitsa,et al.  Study of Н2О line broadening and shifting by N2 pressure in the 16,600–17,060 cm−1 region using FT-spectrometer with LED source , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[9]  A. Solodov,et al.  Measurements of the broadening and shift parameters of the water vapor spectral lines in the 10,100-10,800 cm -1 region induced by pressure of carbon dioxide , 2017 .

[10]  Candice L. Renaud,et al.  A spectral line list for water isotopologues in the 1100–4100 cm−1 region for application to CO2-rich planetary atmospheres , 2016 .

[11]  A. Fedorova,et al.  H216O line list for the study of atmospheres of Venus and Mars , 2015 .

[12]  Jean-Michel Hartmann,et al.  Efficient computation of some speed-dependent isolated line profiles , 2013 .

[13]  Jean-Michel Hartmann,et al.  An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes , 2013 .

[14]  Anna Fedorova,et al.  The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express , 2011 .

[15]  R. Tolchenov,et al.  Water vapor line width and shift calculations with accurate vibration–rotation wave functions , 2008 .

[16]  Robert R. Gamache,et al.  CO2-broadened water in the pure rotation and ν2 fundamental regions , 2007 .

[17]  Anna Fedorova,et al.  MAWD observations revisited: seasonal behavior of water vapor in the martian atmosphere , 2004 .

[18]  A. D. Bykov,et al.  Semi-empiric approach to the calculation of H2O and CO2 line broadening and shifting , 2004 .

[19]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[20]  Robert R. Gamache,et al.  CO2-broadening of water-vapor lines , 1995 .

[21]  John S. Muenter,et al.  The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function , 1991 .

[22]  R. E. Raab,et al.  Measurement of the electric quadrupole moments of CO 2 , CO and N 2 , 1989 .

[23]  W. Flygare,et al.  The molecular Zeeman effect in diamagnetic molecules and the determination of molecular magnetic moments (g values), magnetic susceptibilities, and molecular quadrupole moments , 1971 .

[24]  P. Anderson Pressure Broadening in the Microwave and Infra-Red Regions , 1949 .

[25]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[26]  C. J. Tsao,et al.  Line-widths of pressure-broadened spectral lines , 1962 .