Fault-tolerant edge-pancyclicity of locally twisted cubes

The n-dimensional locally twisted cube LTQ"n is a new variant of the hypercube, which possesses some properties superior to the hypercube. This paper investigates the fault-tolerant edge-pancyclicity of LTQ"n, and shows that if LTQ"n (n>=3) contains at most n-3 faulty vertices and/or edges then, for any fault-free edge e and any integer @? with 6=<@?=<2^n-f"v, there is a fault-free cycle of length @? containing the edge e, where f"v is the number of faulty vertices. The result is optimal in some senses. The proof is based on the recursive structure of LTQ"n.

[1]  Chang-Hsiung Tsai,et al.  Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes , 2007, Inf. Sci..

[2]  Xu Jun-ming,et al.  Fault-tolerant pancyclicity of locally twisted cubes , 2006 .

[3]  Sun-Yuan Hsieh,et al.  Cycle embedding of augmented cubes , 2007, Appl. Math. Comput..

[4]  David J. Evans,et al.  Locally twisted cubes are 4-pancyclic , 2004, Appl. Math. Lett..

[5]  Toru Araki,et al.  Hamiltonian laceability of bubble-sort graphs with edge faults , 2007, Inf. Sci..

[6]  Chiuyuan Chen,et al.  Constructing Independent Spanning Trees for Hypercubes and Locally Twisted Cubes , 2009, 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks.

[7]  Chiun-Chieh Hsu,et al.  Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes , 2010, Inf. Process. Lett..

[8]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[9]  Xiaohua Jia,et al.  Complete path embeddings in crossed cubes , 2006, Inf. Sci..

[10]  Peter A. J. Hilbers,et al.  The Twisted Cube , 1987, PARLE.

[11]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[12]  Lih-Hsing Hsu,et al.  Node-pancyclicity and edge-pancyclicity of hypercube variants , 2007, Inf. Process. Lett..

[13]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[14]  Trevor Mudge,et al.  Hypercube supercomputers , 1989, Proc. IEEE.

[15]  Sun-Yuan Hsieh,et al.  Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults , 2010, J. Comb. Optim..

[16]  Jun-Ming Xu,et al.  Panconnectivity of locally twisted cubes , 2006, Appl. Math. Lett..

[17]  Paul Cull,et al.  The Möbius Cubes , 1995, IEEE Trans. Computers.

[18]  D. S. SzyId,et al.  Parallel Computation: Models And Methods , 1998, IEEE Concurrency.

[19]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[20]  Sheshayya A. Choudum,et al.  Augmented cubes , 2002, Networks.

[21]  Jun-Ming Xu,et al.  Edge-fault-tolerant bipanconnectivity of hypercubes , 2009, Inf. Sci..

[22]  S. F. Nugent,et al.  The iPSC/2 direct-connect communications technology , 1988, C3P.

[23]  Lih-Hsing Hsu,et al.  On embedding cycles into faulty twisted cubes , 2006, Inf. Sci..

[24]  Jimmy J. M. Tan,et al.  Hyper hamiltonian laceability on edge fault star graph , 2004, Inf. Sci..

[25]  Sun-Yuan Hsieh,et al.  Edge-bipancyclicity of a hypercube with faulty vertices and edges , 2008, Discret. Appl. Math..

[26]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[27]  Kemal Efe A Variation on the Hypercube with Lower Diameter , 1991, IEEE Trans. Computers.

[28]  Chang-Hsiung Tsai Fault-tolerant cycles embedded in hypercubes with mixed link and node failures , 2008, Appl. Math. Lett..

[29]  Charles L. Seitz,et al.  The cosmic cube , 1985, CACM.

[30]  David J. Evans,et al.  The locally twisted cubes , 2005, Int. J. Comput. Math..

[31]  Jung-Sheng Fu Longest fault-free paths in hypercubes with vertex faults , 2006, Inf. Sci..

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Jianxi Fan,et al.  Path embedding in faulty locally twisted cubes , 2009, 2009 2nd IEEE International Conference on Computer Science and Information Technology.

[34]  Hyeong-Seok Lim,et al.  Panconnectivity and Pancyclicity of Hypercube-Like Interconnection Networks with Faulty Elements , 2006, ISPA Workshops.

[35]  Sun-Yuan Hsieh,et al.  Constructing edge-disjoint spanning trees in locally twisted cubes , 2009, Theor. Comput. Sci..

[36]  Jimmy J. M. Tan,et al.  Long paths in hypercubes with conditional node-faults , 2009, Inf. Sci..

[37]  Behrooz Parhami,et al.  Introduction to Parallel Processing: Algorithms and Architectures , 1999 .

[38]  Jun-Ming Xu,et al.  Weakly Edge-Pancyclicity of Locally Twisted Cubes , 2008, Ars Comb..

[39]  Jun-Ming Xu,et al.  On Super and Restricted Connectivity of Some Interconnection Networks , 2010, Ars Comb..

[40]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[41]  F. Andre,et al.  Hypercube and Distributed Computers: Proceedings of the First European Workshop, Rennes, France, 4-6 Oct., 1989 , 1989 .

[42]  Jianxi Fan,et al.  Embedding meshes into locally twisted cubes , 2010, Inf. Sci..

[43]  Hui Yang,et al.  A fast diagnosis algorithm for locally twisted cube multiprocessor systems under the MM* model , 2007, Comput. Math. Appl..

[44]  Junming Xu,et al.  Survey on path and cycle embedding in some networks , 2009 .