SDP-based branch-and-bound for non-convex quadratic integer optimization

Semidefinite programming (SDP) relaxations have been intensively used for solving discrete quadratic optimization problems, in particular in the binary case. For the general non-convex integer case with box constraints, the branch-and-bound algorithm Q-MIST has been proposed by Buchheim and Wiegele (Math Program 141(1–2):435–452, 2013), which is based on an extension of the well-known SDP-relaxation for max-cut. For solving the resulting SDPs, Q-MIST uses an off-the-shelf interior point algorithm. In this paper, we present a tailored coordinate ascent algorithm for solving the dual problems of these SDPs. Building on related ideas of Dong (SIAM J Optim 26(3):1962–1985, 2016), it exploits the particular structure of the SDPs, most importantly a small rank of the constraint matrices. The latter allows both an exact line search and a fast incremental update of the inverse matrices involved, so that the entire algorithm can be implemented to run in quadratic time per iteration. Moreover, we describe how to extend this approach to a certain two-dimensional coordinate update. Finally, we explain how to include arbitrary linear constraints into this framework, and evaluate our algorithm experimentally.

[1]  Kim-Chuan Toh,et al.  A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems , 2016, Math. Program..

[2]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[3]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[4]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[5]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[6]  R. Weismantel,et al.  A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..

[7]  Alberto Caprara,et al.  An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming , 2010, IPCO.

[8]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[9]  Hongbo Dong,et al.  Relaxing Nonconvex Quadratic Functions by Multiple Adaptive Diagonal Perturbations , 2014, SIAM J. Optim..

[10]  Stephen P. Boyd,et al.  A semidefinite programming method for integer convex quadratic minimization , 2015, Optimization Letters.

[11]  Christoph Buchheim,et al.  Semidefinite relaxations for non-convex quadratic mixed-integer programming , 2012, Mathematical Programming.

[12]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[13]  C. Helmberg Semidefinite Programming for Combinatorial Optimization , 2000 .

[14]  Franz Rendl,et al.  Solving the Max-cut Problem Using Eigenvalues , 1995, Discret. Appl. Math..

[15]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[16]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[17]  Samuel Burer,et al.  Solving Lift-and-Project Relaxations of Binary Integer Programs , 2006, SIAM J. Optim..

[18]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[19]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[20]  Christoph Buchheim,et al.  Ellipsoid Bounds for Convex Quadratic Integer Programming , 2015, SIAM J. Optim..

[21]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[22]  Laura Palagi,et al.  An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem , 2011, Math. Program..

[23]  Marcus Peinado,et al.  Design and Performance of Parallel and Distributed Approximation Algorithms for Maxcut , 1997, J. Parallel Distributed Comput..

[24]  Christoph Buchheim,et al.  A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming , 2015, SIAM J. Optim..

[25]  Alain Billionnet,et al.  Extending the QCR method to general mixed-integer programs , 2010, Mathematical Programming.

[26]  Christoph Buchheim,et al.  A Coordinate Ascent Method for Solving Semidefinite Relaxations of Non-convex Quadratic Integer Programs , 2016, ISCO.

[27]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[28]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[29]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[30]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[31]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[32]  Samuel Burer,et al.  Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..

[33]  Jeff T. Linderoth,et al.  Solving Box-Constrained Nonconvex Quadratic Programs , 2016 .

[34]  Kim-Chuan Toh,et al.  A Convergent 3-Block SemiProximal Alternating Direction Method of Multipliers for Conic Programming with 4-Type Constraints , 2014, SIAM J. Optim..

[35]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[36]  Adam N. Letchford,et al.  On Nonconvex Quadratic Programming with Box Constraints , 2009, SIAM J. Optim..