SDP-based branch-and-bound for non-convex quadratic integer optimization
暂无分享,去创建一个
[1] Kim-Chuan Toh,et al. A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems , 2016, Math. Program..
[2] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[3] B. Borchers. CSDP, A C library for semidefinite programming , 1999 .
[4] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[5] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[6] R. Weismantel,et al. A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..
[7] Alberto Caprara,et al. An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming , 2010, IPCO.
[8] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[9] Hongbo Dong,et al. Relaxing Nonconvex Quadratic Functions by Multiple Adaptive Diagonal Perturbations , 2014, SIAM J. Optim..
[10] Stephen P. Boyd,et al. A semidefinite programming method for integer convex quadratic minimization , 2015, Optimization Letters.
[11] Christoph Buchheim,et al. Semidefinite relaxations for non-convex quadratic mixed-integer programming , 2012, Mathematical Programming.
[12] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[13] C. Helmberg. Semidefinite Programming for Combinatorial Optimization , 2000 .
[14] Franz Rendl,et al. Solving the Max-cut Problem Using Eigenvalues , 1995, Discret. Appl. Math..
[15] Wotao Yin,et al. Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..
[16] Christodoulos A. Floudas,et al. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.
[17] Samuel Burer,et al. Solving Lift-and-Project Relaxations of Binary Integer Programs , 2006, SIAM J. Optim..
[18] David Pisinger,et al. The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..
[19] Kim-Chuan Toh,et al. A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..
[20] Christoph Buchheim,et al. Ellipsoid Bounds for Convex Quadratic Integer Programming , 2015, SIAM J. Optim..
[21] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[22] Laura Palagi,et al. An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem , 2011, Math. Program..
[23] Marcus Peinado,et al. Design and Performance of Parallel and Distributed Approximation Algorithms for Maxcut , 1997, J. Parallel Distributed Comput..
[24] Christoph Buchheim,et al. A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming , 2015, SIAM J. Optim..
[25] Alain Billionnet,et al. Extending the QCR method to general mixed-integer programs , 2010, Mathematical Programming.
[26] Christoph Buchheim,et al. A Coordinate Ascent Method for Solving Semidefinite Relaxations of Non-convex Quadratic Integer Programs , 2016, ISCO.
[27] R. Saigal,et al. Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .
[28] Franz Rendl,et al. Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..
[29] Nikolaos V. Sahinidis,et al. A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..
[30] Michael L. Overton,et al. Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..
[31] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[32] Samuel Burer,et al. Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..
[33] Jeff T. Linderoth,et al. Solving Box-Constrained Nonconvex Quadratic Programs , 2016 .
[34] Kim-Chuan Toh,et al. A Convergent 3-Block SemiProximal Alternating Direction Method of Multipliers for Conic Programming with 4-Type Constraints , 2014, SIAM J. Optim..
[35] Gérard Cornuéjols,et al. An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..
[36] Adam N. Letchford,et al. On Nonconvex Quadratic Programming with Box Constraints , 2009, SIAM J. Optim..