Resolution enhancement in scanning electron microscopy using deep learning

We present a deep learning-based framework to perform image super-resolution in scanning electron microscopy. The technique was demonstrated to perform a resolution enhancement using a standard resolution test target and hydrogel samples.

[1]  D. Beniac,et al.  The scanning electron microscope in microbiology and diagnosis of infectious disease , 2016, Scientific Reports.

[2]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[3]  S. N. Melkote,et al.  Modeling and Experimental Study on Ductile-to-Brittle Cutting Mode Transition in Single Grit Diamond Scribing of Silicon: Application to Wire Sawing of Silicon Wafers , 2011 .

[4]  Yibo Zhang,et al.  Deep learning enhanced mobile-phone microscopy , 2017, ACS Photonics.

[5]  Yibo Zhang,et al.  Deep Learning Microscopy , 2017, ArXiv.

[6]  Veit Elser,et al.  Electron ptychography of 2D materials to deep sub-ångström resolution , 2018, Nature.

[7]  Heide Schatten,et al.  Low voltage high-resolution SEM (LVHRSEM) for biological structural and molecular analysis. , 2011, Micron.

[8]  Aydogan Ozcan,et al.  Resolution Enhancement in Scanning Electron Microscopy using Deep Learning , 2020 .

[9]  R. Kang,et al.  A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut , 2015, Scientific Reports.

[10]  A. Ozcan,et al.  Deep learning enables cross-modality super-resolution in fluorescence microscopy , 2018, Nature Methods.

[11]  David C. Joy,et al.  X-Ray Microanalysis Case Studies , 2018 .

[12]  William R. Pelton Distinguishing the Cause of Textile Fiber Damage Using the Scanning Electron Microscope (SEM) , 1995 .

[13]  Yonina C. Eldar,et al.  Sparsity-Based Super Resolution for SEM Images , 2017, Nano letters.

[14]  Bo Wang,et al.  Changes in surface layer of silicon wafers from diamond scratching , 2015 .

[15]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[17]  Christophe Leterrier,et al.  NanoJ-SQUIRREL: quantitative mapping and minimisation of super-resolution optical imaging artefacts , 2018, Nature Methods.

[18]  Keke Chang,et al.  New Deformation-Induced Nanostructure in Silicon. , 2018, Nano letters.

[19]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[20]  Fumiko Yano,et al.  Deconvolution of scanning electron microscopy images , 1993 .

[21]  Shreyes N. Melkote,et al.  Study of Ductile-to-Brittle Transition in Single Grit Diamond Scribing of Silicon: Application to Wire Sawing of Silicon Wafers , 2012 .

[22]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[23]  Yvan Saeys,et al.  Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[24]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[25]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[26]  Michael T. Postek,et al.  On the Sub-Nanometer Resolution of Scanning Electron and Helium Ion Microscopes , 2009, Microscopy Today.

[27]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[28]  Charles A. Bouman,et al.  Multi-Resolution Data Fusion for Super-Resolution Electron Microscopy , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[29]  B. Titze,et al.  Techniques to prevent sample surface charging and reduce beam damage effects for SBEM imaging , 2013 .