A review of sparsity-based clustering methods

Abstract In case of high dimensionality, a class of data clustering methods has been proposed as a solution that includes suitable subspace search to find inherent clusters. Sparsity-based clustering approaches include a twist in subspace approach as they incorporate a dimensionality expansion through the usage of an overcomplete dictionary representation. Thus, these approaches provide a broader search space to utilize subspace clustering at large. However, sparsity constraint alone does not enforce structured clusters. Through certain stricter constraints, data grouping is possible, which translates to a type of clustering depending on the types of constraints. The dual of the sparsity constraint, namely the dictionary, is another aspect of the whole sparsity-based clustering methods. Unlike off-the-shelf or fixed-waveform dictionaries, adaptive dictionaries can additionally be utilized to shape the state-model entity into a more adaptive form. Chained with structured sparsity, adaptive dictionaries force the state-model into well-formed clusters. Subspaces designated with structured sparsity can then be dissolved through recursion to acquire deep sparse structures that correspond to a taxonomy. As a final note, such procedure can further be extended to include various other machine learning perspectives.

[1]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[2]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[3]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[4]  Ke-Lin Du,et al.  Clustering: A neural network approach , 2010, Neural Networks.

[5]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[6]  P. Tseng Nearest q-Flat to m Points , 2000 .

[7]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[8]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[9]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[10]  Julien Mairal,et al.  Proximal Methods for Hierarchical Sparse Coding , 2010, J. Mach. Learn. Res..

[11]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[12]  Vladimir Stojanovic,et al.  A Nature Inspired Parameter Tuning Approach to Cascade Control for Hydraulically Driven Parallel Robot Platform , 2016, J. Optim. Theory Appl..

[13]  Shi Zhong,et al.  Efficient online spherical k-means clustering , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[14]  Michael Elad,et al.  Compression of facial images using the K-SVD algorithm , 2008, J. Vis. Commun. Image Represent..

[15]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Rémi Gribonval,et al.  Learning unions of orthonormal bases with thresholded singular value decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[17]  T. Boult,et al.  Factorization-based segmentation of motions , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[18]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[19]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[20]  Vladimir Stojanovic,et al.  A nature inspired optimal control of pneumatic-driven parallel robot platform , 2017 .

[21]  A. D. Gordon A Review of Hierarchical Classification , 1987 .

[22]  Rémi Gribonval,et al.  Sparse and Spurious: Dictionary Learning With Noise and Outliers , 2014, IEEE Transactions on Information Theory.

[23]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[24]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[25]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[26]  Youji Iiguni,et al.  Sparse image representations with shift-invariant tree-structured dictionaries , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[27]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[28]  Gilad Lerman,et al.  Hybrid Linear Modeling via Local Best-Fit Flats , 2010, International Journal of Computer Vision.

[29]  Lei Zhang,et al.  Sparsity-based image denoising via dictionary learning and structural clustering , 2011, CVPR 2011.

[30]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[31]  I. Jolliffe Principal Component Analysis , 2002 .

[32]  Michael Elad,et al.  Image Sequence Denoising via Sparse and Redundant Representations , 2009, IEEE Transactions on Image Processing.

[33]  Dale Schuurmans,et al.  Maximum Margin Clustering , 2004, NIPS.

[34]  Hans-Peter Kriegel,et al.  Density‐based clustering , 2011, WIREs Data Mining Knowl. Discov..

[35]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[36]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[37]  V. Stojanovic,et al.  Application of cuckoo search algorithm to constrained control problem of a parallel robot platform , 2016, The International Journal of Advanced Manufacturing Technology.

[38]  Edwin Diday,et al.  Symbolic clustering using a new dissimilarity measure , 1991, Pattern Recognit..

[39]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[40]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[41]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[42]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[43]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[44]  Birgit Vogel-Heuser,et al.  Sparse representation and its applications in micro-milling condition monitoring: noise separation and tool condition monitoring , 2014 .

[45]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[46]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[47]  Mike E. Davies,et al.  Gradient Pursuits , 2008, IEEE Transactions on Signal Processing.

[48]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[49]  Yiming Yang,et al.  Von Mises-Fisher Clustering Models , 2014, ICML.

[50]  Mehmet Türkan,et al.  Dictionary learning with residual codes , 2017, 2017 25th Signal Processing and Communications Applications Conference (SIU).

[51]  Ezzatollah Salari,et al.  Single-image super resolution using evolutionary sparse coding technique , 2017, IET Image Process..

[52]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[53]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[54]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[55]  Richard Baraniuk,et al.  Recovery of Clustered Sparse Signals from Compressive Measurements , 2009 .

[56]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[57]  Yonina C. Eldar,et al.  Introduction to Compressed Sensing , 2022 .

[58]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[59]  Michael Elad,et al.  Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation , 2010, IEEE Transactions on Signal Processing.

[60]  Mike E. Davies,et al.  Sparse and shift-Invariant representations of music , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[61]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[62]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[64]  Kjersti Engan,et al.  Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation , 2007, Digit. Signal Process..

[65]  Hakan Cevikalp,et al.  Large margin classifiers based on affine hulls , 2010, Neurocomputing.

[66]  Michael Elad,et al.  Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary , 2008, SIAM J. Imaging Sci..

[67]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[68]  A. Clark,et al.  Artificial Intelligence: The Very Idea. , 1988 .

[69]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[70]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[71]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[72]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[73]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[74]  Pierre Vandergheynst,et al.  MoTIF: An Efficient Algorithm for Learning Translation Invariant Dictionaries , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[75]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[76]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[77]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[79]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[80]  Kjersti Engan,et al.  Recursive Least Squares Dictionary Learning Algorithm , 2010, IEEE Transactions on Signal Processing.

[81]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[82]  B. McNaughton,et al.  Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. , 1990, Progress in brain research.

[83]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[84]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[85]  Pierre Vandergheynst,et al.  Image compression with learnt tree-structured dictionaries , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[86]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[87]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[88]  Bruno A. Olshausen,et al.  Learning Sparse Multiscale Image Representations , 2002, NIPS.

[89]  Ivor W. Tsang,et al.  Maximum Margin Clustering Made Practical , 2009, IEEE Trans. Neural Networks.

[90]  Vladimir Stojanovic,et al.  Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise , 2016 .

[91]  Xin Liu,et al.  Document clustering based on non-negative matrix factorization , 2003, SIGIR.

[92]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[93]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[94]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[95]  Christine Guillemot,et al.  Image Compression Using Sparse Representations and the Iteration-Tuned and Aligned Dictionary , 2011, IEEE Journal of Selected Topics in Signal Processing.

[96]  Pierre Vandergheynst,et al.  Image compression using an edge adapted redundant dictionary and wavelets , 2006, Signal Process..

[97]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[98]  Gilad Lerman,et al.  Median K-Flats for hybrid linear modeling with many outliers , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[99]  Maury A. Nussbaum,et al.  Robust Sparse Representation-Based Classification Using Online Sensor Data for Monitoring Manual Material Handling Tasks , 2018, IEEE Transactions on Automation Science and Engineering.

[100]  Vladimir Stojanovic,et al.  Adaptive Input Design for Identification of Output Error Model with Constrained Output , 2014, Circuits Syst. Signal Process..

[101]  Guillermo Sapiro,et al.  Sparse representations for limited data tomography , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[102]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[104]  Andreas M. Tillmann On the Computational Intractability of Exact and Approximate Dictionary Learning , 2014, IEEE Signal Processing Letters.

[105]  L. Shao,et al.  From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms , 2014, IEEE Transactions on Cybernetics.

[106]  Vladimir Stojanovic,et al.  Identification of time‐varying OE models in presence of non‐Gaussian noise: Application to pneumatic servo drives , 2016 .

[107]  K. Mardia Statistics of Directional Data , 1972 .

[108]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[109]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[110]  Li-Wei Kang,et al.  Self-Learning Based Image Decomposition With Applications to Single Image Denoising , 2014, IEEE Transactions on Multimedia.

[111]  K. Chidananda Gowda,et al.  Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..

[112]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[113]  Onur G. Guleryuz,et al.  Sparse orthonormal transforms for image compression , 2008, 2008 15th IEEE International Conference on Image Processing.

[114]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[115]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[116]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[117]  B. Everitt The Cambridge Dictionary of Statistics , 1998 .

[118]  Zhuo Chen,et al.  Deep clustering: Discriminative embeddings for segmentation and separation , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[119]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[120]  Hong Sun,et al.  Bayesian compressive sensing for cluster structured sparse signals , 2012, Signal Process..

[121]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[122]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.