Bone marrow lesions: plugging the holes in our knowledge using animal models

[1]  A. Guermazi,et al.  Osteoarthritis Bone Marrow Lesions. , 2022, Osteoarthritis and cartilage.

[2]  A. Pitsillides,et al.  High bone mass in mice can be linked to lower osteoclast formation, resorptive capacity, and restricted in vitro sensitivity to inhibition by stable sulforaphane , 2022, Cell biochemistry and function.

[3]  D. McWilliams,et al.  The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis , 2022, Osteoarthritis and cartilage.

[4]  M. Karperien,et al.  Joint-on-chip platforms: entering a new era of in vitro models for arthritis , 2022, Nature Reviews Rheumatology.

[5]  I. Amado A novel osteochondral explant model to study bone and cartilage responses to damage in PTOA , 2021 .

[6]  A. Simpson,et al.  Optimization and Validation of a Human Ex Vivo Femoral Head Model for Preclinical Cartilage Research and Regenerative Therapies , 2020, Cartilage.

[7]  Mark T Elliott,et al.  The use of technology in the subcategorisation of osteoarthritis: a Delphi study approach , 2020, Osteoarthritis and cartilage open.

[8]  D. Felson,et al.  Association between Bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis , 2019, Osteoarthritis and cartilage.

[9]  F. Cicuttini,et al.  Bone Marrow Lesions in Knee Osteoarthritis: Regional Differences in Tibial Subchondral Bone Microstructure and their Association with Cartilage Degeneration. , 2019, Osteoarthritis and Cartilage.

[10]  A. Barbero,et al.  Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model , 2019, Nature Biomedical Engineering.

[11]  C. Chenu,et al.  Noninvasive Mechanical Joint Loading as an Alternative Model for Osteoarthritic Pain , 2019, Arthritis & rheumatology.

[12]  R. Todhunter,et al.  Spontaneous dog osteoarthritis — a One Medicine vision , 2019, Nature Reviews Rheumatology.

[13]  Y. Li,et al.  Models of osteoarthritis: the good, the bad and the promising , 2019, Osteoarthritis and cartilage.

[14]  J. Johnston,et al.  Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density , 2019, BMC Musculoskeletal Disorders.

[15]  M. Schramme,et al.  Bone marrow lesions of the distal condyles of the third metacarpal bone are common and not always related to lameness in sports and pleasure horses , 2018, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association.

[16]  T. Maus,et al.  Clinical magnetic resonance-enabled characterization of mono-iodoacetate-induced osteoarthritis in a large animal species , 2018, PloS one.

[17]  D. Felson,et al.  Bone marrow lesions in osteoarthritis: What lies beneath , 2018, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[18]  C. Bozynski,et al.  Subchondroplasty for the treatment of post‐traumatic bone marrow lesions of the medial femoral condyle in a pre‐clinical canine model , 2018, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  F. Cicuttini,et al.  Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis. , 2018, Bone.

[20]  D. Hunter,et al.  Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. , 2017, Osteoarthritis and cartilage.

[21]  M. Koff,et al.  An in vivo model of a mechanically-induced bone marrow lesion. , 2017, Journal of biomechanics.

[22]  K. Chiu,et al.  Is subchondral bone cyst formation in non-load-bearing region of osteoarthritic knee a vascular problem? , 2017, Medical hypotheses.

[23]  Irina Vetter,et al.  Methods Used to Evaluate Pain Behaviors in Rodents , 2017, Front. Mol. Neurosci..

[24]  F. Howe,et al.  Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation , 2017, Annals of the rheumatic diseases.

[25]  A. Pitsillides,et al.  The STR/ort mouse model of spontaneous osteoarthritis – an update , 2017, Osteoarthritis and cartilage.

[26]  K. Chiu,et al.  Spontaneously Hypertensive Rat as a Novel Model of Co-morbid Knee Osteoarthritis , 2017 .

[27]  J. Raya,et al.  A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis. , 2016, Osteoarthritis and cartilage.

[28]  S. Mclure,et al.  Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the Osteoarthritis Initiative. , 2016, Annals of the Rheumatic Diseases.

[29]  David M Findlay,et al.  Bone–cartilage crosstalk: a conversation for understanding osteoarthritis , 2016, Bone Research.

[30]  F. Cicuttini,et al.  Bone marrow lesions detected by specific combination of MRI sequences are associated with severity of osteochondral degeneration , 2016, Arthritis Research & Therapy.

[31]  F. Ponchel,et al.  Mesenchymal Stem Cell Alterations in Bone Marrow Lesions in Patients With Hip Osteoarthritis , 2016, Arthritis & rheumatology.

[32]  E. Eriksen Treatment of bone marrow lesions (bone marrow edema). , 2015, BoneKEy reports.

[33]  F. Guilak,et al.  Non-invasive mouse models of post-traumatic osteoarthritis. , 2015, Osteoarthritis and cartilage.

[34]  S. Kingsbury,et al.  A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis , 2015, Arthritis Research & Therapy.

[35]  F. Cicuttini,et al.  Association of patellar bone marrow lesions with knee pain, patellar cartilage defect and patellar cartilage volume loss in older adults: a cohort study. , 2015, Osteoarthritis and cartilage.

[36]  A. McCoy Animal Models of Osteoarthritis , 2015, Veterinary pathology.

[37]  A. Pitsillides,et al.  Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions , 2015, Osteoarthritis and cartilage.

[38]  C. Bozynski,et al.  Development of a Novel Canine Model for Posttraumatic Osteoarthritis of the Knee , 2015, The Journal of Knee Surgery.

[39]  D. Beckwée,et al.  The Influence of Joint Loading on Bone Marrow Lesions in the Knee , 2015, The American journal of sports medicine.

[40]  Philip G. Conaghan,et al.  Impact and therapy of osteoarthritis: the Arthritis Care OA Nation 2012 survey , 2015, Clinical Rheumatology.

[41]  D. A. van der Windt,et al.  Pain trajectory groups in persons with, or at high risk of, knee osteoarthritis: findings from the Knee Clinical Assessment Study and the Osteoarthritis Initiative , 2014, Osteoarthritis and cartilage.

[42]  Wen-zhi Chen,et al.  Magnetic Resonance Imaging of Osteophytic, Chondral, and Subchondral Structures in a Surgically-Induced Osteoarthritis Rabbit Model , 2014, PloS one.

[43]  C. Rimnac,et al.  Quantitative relationships between microdamage and cancellous bone strength and stiffness. , 2014, Bone.

[44]  J. Collins,et al.  Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro , 2014, Nature Methods.

[45]  F. Cicuttini,et al.  Association of obesity and systemic factors with bone marrow lesions at the knee: a systematic review. , 2014, Seminars in arthritis and rheumatism.

[46]  M. Thali,et al.  Essentials of forensic post-mortem MR imaging in adults. , 2014, The British journal of radiology.

[47]  Tan Hwee Chye Andrew,et al.  The Truth Behind Subchondral Cysts in Osteoarthritis of the Knee , 2014, The open orthopaedics journal.

[48]  W. Lems,et al.  Three trajectories of activity limitations in early symptomatic knee osteoarthritis: a 5-year follow-up study , 2013, Annals of the rheumatic diseases.

[49]  K Henriksen,et al.  Osteoarthritis--a case for personalized health care? , 2014, Osteoarthritis and cartilage.

[50]  C. Rimnac,et al.  Microdamage Caused by Fatigue Loading in Human Cancellous Bone: Relationship to Reductions in Bone Biomechanical Performance , 2013, PloS one.

[51]  S. Majumdar,et al.  Association of cartilage defects, and other MRI findings with pain and function in individuals with mild-moderate radiographic hip osteoarthritis and controls. , 2013, Osteoarthritis and cartilage.

[52]  M. Chou,et al.  Sequential Change in T2* Values of Cartilage, Meniscus, and Subchondral Bone Marrow in a Rat Model of Knee Osteoarthritis , 2013, PloS one.

[53]  Jincheng Pang,et al.  Bone marrow lesion volume reduction is not associated with improvement of other periarticular bone measures: data from the Osteoarthritis Initiative , 2013, Arthritis Research & Therapy.

[54]  F. Cicuttini,et al.  Are biomechanical factors, meniscal pathology, and physical activity risk factors for bone marrow lesions at the knee? A systematic review. , 2013, Seminars in arthritis and rheumatism.

[55]  Jincheng Pang,et al.  Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker - longitudinal relationships with pain and structural changes: data from the Osteoarthritis Initiative , 2013, Arthritis Research & Therapy.

[56]  Neil A Segal,et al.  The Multicenter Osteoarthritis Study: Opportunities for Rehabilitation Research , 2013, PM & R : the journal of injury, function, and rehabilitation.

[57]  T. Wright,et al.  In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. , 2013, Arthritis and rheumatism.

[58]  L. Riley,et al.  Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis , 2013, Nature Medicine.

[59]  Felix Eckstein,et al.  Quantification of bone marrow lesion volume and volume change using semi-automated segmentation: data from the osteoarthritis initiative , 2013, BMC Musculoskeletal Disorders.

[60]  S. Majumdar,et al.  Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. , 2013, Osteoarthritis and cartilage.

[61]  L. Beenen,et al.  Postmortem imaging exposed: an aid in MR imaging of musculoskeletal structures , 2013, Skeletal Radiology.

[62]  A. Silman,et al.  Mapping pathogenesis of arthritis through small animal models. , 2012, Rheumatology.

[63]  L. Sharma,et al.  Knee malalignment is associated with an increased risk for incident and enlarging bone marrow lesions in the more loaded compartments: the MOST study. , 2012, Osteoarthritis and cartilage.

[64]  D. Felson,et al.  Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. , 2012, Seminars in arthritis and rheumatism.

[65]  B. Christiansen,et al.  Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. , 2012, Osteoarthritis and cartilage.

[66]  O. Weber,et al.  The influence of body temperature on image contrast in post mortem MRI. , 2012, European journal of radiology.

[67]  D. Zani,et al.  Magnetic resonance imaging findings of bone marrow lesions in the equine distal tarsus , 2012 .

[68]  J. Gati,et al.  An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis , 2012, Arthritis Research & Therapy.

[69]  L. Laslett,et al.  Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial , 2012, Annals of the rheumatic diseases.

[70]  R. Boudreau,et al.  Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). , 2011, Osteoarthritis and cartilage.

[71]  Ali Guermazi,et al.  Advances in imaging of osteoarthritis and cartilage. , 2011, Radiology.

[72]  V. Busoni,et al.  Impact of successive freezing-thawing cycles on 3-T magnetic resonance images of the digits of isolated equine limbs. , 2011, American journal of veterinary research.

[73]  Ali Guermazi,et al.  Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. , 2011, Arthritis and rheumatism.

[74]  T. Huizinga,et al.  Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review , 2010, Annals of the rheumatic diseases.

[75]  A. Pitsillides,et al.  Characterizing a novel and adjustable noninvasive murine joint loading model. , 2011, Arthritis and rheumatism.

[76]  G. Zhai,et al.  Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults , 2010, Arthritis Research & Therapy.

[77]  F. Berenbaum The OARSI histopathology initiative - the tasks and limitations. , 2010, Osteoarthritis and cartilage.

[78]  K. Kaneko,et al.  A longitudinal study of the relationship between the status of bone marrow abnormalities and progression of knee osteoarthritis , 2010, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[79]  D. Felson,et al.  Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging--the MOST study. , 2010, Radiology.

[80]  R. Zernicke,et al.  In vivo microfocal computed tomography and micro-magnetic resonance imaging evaluation of antiresorptive and antiinflammatory drugs as preventive treatments of osteoarthritis in the rat. , 2010, Arthritis and rheumatism.

[81]  Johanne Martel-Pelletier,et al.  Relationship between bone marrow lesions, cartilage loss and pain in knee osteoarthritis: results from a randomised controlled clinical trial using MRI , 2010, Annals of the rheumatic diseases.

[82]  D. Felson,et al.  Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: the MOST study. , 2010, European journal of radiology.

[83]  F. Cicuttini,et al.  Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. , 2010, Rheumatology.

[84]  D. English,et al.  Development of bone marrow lesions is associated with adverse effects on knee cartilage while resolution is associated with improvement - a potential target for prevention of knee osteoarthritis: a longitudinal study , 2010, Arthritis research & therapy.

[85]  J. Griffith,et al.  Pitfalls in interpreting rat knee joint magnetic resonance images and their histological correlation , 2009, Acta radiologica.

[86]  M. Nevitt,et al.  Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. , 2009, Radiology.

[87]  Bejoy Thomas,et al.  Principles, techniques, and applications of T2*-based MR imaging and its special applications. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[88]  A Guermazi,et al.  MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. , 2009, Osteoarthritis and cartilage.

[89]  Nicola Vanello,et al.  Biological Effects and Safety in Magnetic Resonance Imaging: A Review , 2009, International journal of environmental research and public health.

[90]  A. Guermazi,et al.  MRI-based semiquantitative assessment of subchondral bone marrow lesions in osteoarthritis research. , 2009, Osteoarthritis and cartilage.

[91]  G. Beauchamp,et al.  Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis--part I. , 2009, Osteoarthritis and cartilage.

[92]  J. Raynauld,et al.  Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection. , 2008, Osteoarthritis and cartilage.

[93]  N. Kettner,et al.  Bone marrow edema: pathophysiology, differential diagnosis, and imaging , 2008, Acta radiologica.

[94]  J. Bloem,et al.  Do MRI features at baseline predict radiographic joint space narrowing in the medial compartment of the osteoarthritic knee 2 years later? , 2008, Skeletal Radiology.

[95]  J. Craig,et al.  Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up , 2008, Skeletal Radiology.

[96]  E. Krupinski,et al.  Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology , 2008, Skeletal Radiology.

[97]  J. Raynauld,et al.  Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis , 2007, Annals of the rheumatic diseases.

[98]  J F Beary,et al.  Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period , 2007, Annals of the rheumatic diseases.

[99]  A. Guermazi,et al.  The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston–Leeds Osteoarthritis Knee Score) , 2007, Annals of the rheumatic diseases.

[100]  Ali Guermazi,et al.  Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. , 2007, Arthritis and rheumatism.

[101]  J. Lang,et al.  MRI characteristics and histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. , 2007, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association.

[102]  J. Parellada,et al.  MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. , 2006, Osteoarthritis and cartilage.

[103]  J. Bloem,et al.  Osteoarthritis of the knee: association between clinical features and MR imaging findings. , 2006, Radiology.

[104]  Ali Guermazi,et al.  Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. , 2006, Arthritis and rheumatism.

[105]  C. Hayes,et al.  Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. , 2005, Radiology.

[106]  J. Bloem,et al.  MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system , 2005, Skeletal Radiology.

[107]  H. Genant,et al.  Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. , 2004, Osteoarthritis and cartilage.

[108]  Sharmila Majumdar,et al.  Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. , 2003, Radiology.

[109]  B. Hansen Assessment of pain in dogs: veterinary clinical studies. , 2003, ILAR journal.

[110]  L. Kazis,et al.  The Association of Bone Marrow Lesions with Pain in Knee Osteoarthritis , 2001, Annals of Internal Medicine.

[111]  M. Zanetti,et al.  Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. , 2000, Radiology.

[112]  P. Rumph,et al.  Low-field magnetic resonance imaging of early subchondral cyst-like lesions in induced cranial cruciate ligament deficient dogs. , 1998, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association.

[113]  O. Svensson,et al.  Correlation of morphologic and biochemical changes in the natural history of spontaneous osteoarthrosis in guinea pigs. , 1997, Arthritis and rheumatism.

[114]  T. Chambers,et al.  Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. , 1997, The Journal of endocrinology.

[115]  F. Reinholt,et al.  Focal destruction and remodeling in guinea pig arthrosis. , 1996, Acta orthopaedica Scandinavica.

[116]  L D Hall,et al.  Degenerative joint disease in the guinea pig. Use of magnetic resonance imaging to monitor progression of bone pathology. , 1996, Arthritis and rheumatism.

[117]  G. Adam,et al.  MRI of degenerative bone marrow lesions in experimental osteoarthritis of canine knee joints , 1996, Skeletal Radiology.

[118]  L. Donahue,et al.  Genetic variability in adult bone density among inbred strains of mice. , 1996, Bone.

[119]  R. Parkkola,et al.  The effects of the method of death and lapsed time on proton relaxation time T1 in autopsied muscle samples. , 1993, Investigative radiology.

[120]  A. Bendele,et al.  Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in guinea pigs. , 1991, Arthritis and rheumatism.

[121]  A. Wilson,et al.  Transient osteoporosis: transient bone marrow edema? , 1988, Radiology.

[122]  M. Walton Degenerative joint disease in the mouse knee; radiological and morphological observations , 1977, The Journal of pathology.

[123]  D Resnick,et al.  Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. , 1977, AJR. American journal of roentgenology.

[124]  W. M. Rogers,et al.  Vascular foramina and arterial supply of the distal end of the femur. , 1950, The Journal of bone and joint surgery. American volume.