Methodology for Optimizing Fuzzy Classifiers Based on Computational Intelligence

In this paper a methodology using evolutionary algorithms is introduced for the optimization of fuzzy classifiers based on B-splines. The proposed algorithm maximizes the performance and minimizes the size of the classifier. On a well-known classification problem the algorithm performs an input selection over 9 observed characteristics yielding in a statement which attributes are important with respect to diagnose malignant or benign type of cancer.

[1]  O. Mangasarian,et al.  Multisurface method of pattern separation for medical diagnosis applied to breast cytology. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[2]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .