Fundamental Limits of Weak Recovery with Applications to Phase Retrieval

In phase retrieval, we want to recover an unknown signal $${{\varvec{x}}}\in {{\mathbb {C}}}^d$$x∈Cd from n quadratic measurements of the form $$y_i = |\langle {{\varvec{a}}}_i,{{\varvec{x}}}\rangle |^2+w_i$$yi=|⟨ai,x⟩|2+wi, where $${{\varvec{a}}}_i\in {{\mathbb {C}}}^d$$ai∈Cd are known sensing vectors and $$w_i$$wi is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator $${\hat{{{\varvec{x}}}}}({{\varvec{y}}})$$x^(y) that is positively correlated with the signal $${{\varvec{x}}}$$x? We consider the case of Gaussian vectors $${{\varvec{a}}}_i$$ai. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For $$n\le d-o(d)$$n≤d-o(d), no estimator can do significantly better than random and achieve a strictly positive correlation. For $$n\ge d+o(d)$$n≥d+o(d), a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements $$y_i$$yi produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.

[1]  Sundeep Rangan,et al.  Recursive consistent estimation with bounded noise , 2001, IEEE Trans. Inf. Theory.

[2]  O. Johnson,et al.  A strong converse bound for multiple hypothesis testing, with applications to high-dimensional estimation , 2017 .

[3]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[4]  Christos Thrampoulidis,et al.  Phase retrieval via linear programming: Fundamental limits and algorithmic improvements , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  Andrea Montanari,et al.  High dimensional robust M-estimation: asymptotic variance via approximate message passing , 2013, Probability Theory and Related Fields.

[6]  Justin Romberg,et al.  Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation , 2016, AISTATS.

[7]  J. Corbett The pauli problem, state reconstruction and quantum-real numbers , 2006 .

[8]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[9]  Zhaoran Wang,et al.  Agnostic Estimation for Misspecified Phase Retrieval Models , 2020, NIPS.

[10]  Cristopher Moore,et al.  Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[12]  Gang Wang,et al.  Solving Almost all Systems of Random Quadratic Equations , 2017, NIPS 2017.

[13]  Andrea Montanari,et al.  Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics , 2014, IEEE Transactions on Information Theory.

[14]  Sanjeev Arora,et al.  Simple, Efficient, and Neural Algorithms for Sparse Coding , 2015, COLT.

[15]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[16]  Ke Wei Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study , 2015 .

[17]  Dan Edidin,et al.  An algebraic characterization of injectivity in phase retrieval , 2013, ArXiv.

[18]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[19]  Feng Ruan,et al.  Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval , 2017, Information and Inference: A Journal of the IMA.

[20]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[21]  Jianfeng Yao,et al.  On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..

[22]  Yuxin Chen,et al.  The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences , 2016, Communications on Pure and Applied Mathematics.

[23]  J. Miao,et al.  Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. , 2008, Annual review of physical chemistry.

[24]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[25]  Yue M. Lu,et al.  Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation , 2017, Information and Inference: A Journal of the IMA.

[26]  Ramji Venkataramanan,et al.  Strong converse bounds for high-dimensional estimation , 2017, ArXiv.

[27]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[28]  Christos Thrampoulidis,et al.  The squared-error of generalized LASSO: A precise analysis , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[29]  Sundeep Rangan,et al.  Compressive phase retrieval via generalized approximate message passing , 2012, Allerton Conference.

[30]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[31]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[32]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[33]  Christos Thrampoulidis,et al.  LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements , 2015, NIPS.

[34]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[35]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[36]  Martin Vetterli,et al.  Bits From Photons: Oversampled Image Acquisition Using Binary Poisson Statistics , 2011, IEEE Transactions on Image Processing.

[37]  Galen Reeves,et al.  The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[38]  Cedric E. Ginestet Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .

[39]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[40]  Andrea Montanari,et al.  The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.

[41]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[42]  Yaniv Plan,et al.  The Generalized Lasso With Non-Linear Observations , 2015, IEEE Transactions on Information Theory.

[43]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[44]  Emmanuel J. Candès,et al.  SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax , 2015, ArXiv.

[45]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[46]  Laurent Demanet,et al.  Convex Recovery From Interferometric Measurements , 2013, IEEE Transactions on Computational Imaging.

[47]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[48]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[49]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[50]  Noureddine El Karoui,et al.  Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators : rigorous results , 2013, 1311.2445.

[51]  Andrea Montanari,et al.  Estimation of low-rank matrices via approximate message passing , 2017, The Annals of Statistics.

[52]  Hari Bercovici,et al.  Outliers in the spectrum of large deformed unitarily invariant models , 2012, 1412.4916.

[53]  Florent Krzakala,et al.  Phase diagram and approximate message passing for blind calibration and dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[54]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[55]  Yanjun Li,et al.  Blind Recovery of Sparse Signals From Subsampled Convolution , 2015, IEEE Transactions on Information Theory.

[56]  Elchanan Mossel,et al.  Density Evolution in the Degree-correlated Stochastic Block Model , 2015, COLT.

[57]  Adel Javanmard,et al.  Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.

[58]  Florent Krzakala,et al.  Statistical physics of inference: thresholds and algorithms , 2015, ArXiv.

[59]  Elchanan Mossel,et al.  Belief propagation, robust reconstruction and optimal recovery of block models , 2013, COLT.

[60]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[61]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[62]  Michael Unser,et al.  Maximum likelihood estimation of liner signal parameters for Poisson processes , 1988, IEEE Trans. Acoust. Speech Signal Process..

[63]  Nicolas Macris,et al.  Phase Transitions, Optimal Errors and Optimality of Message-Passing in Generalized Linear Models , 2017, ArXiv.

[64]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[65]  Xiaodong Li,et al.  Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.

[66]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[67]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[68]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[69]  Nicolas Macris,et al.  Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation , 2017, IEEE Transactions on Information Theory.

[70]  Andrea Montanari,et al.  Universality in Polytope Phase Transitions and Message Passing Algorithms , 2012, ArXiv.

[71]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[72]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[73]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[74]  Florent Krzakala,et al.  Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization , 2014, IEEE Transactions on Information Theory.

[75]  Gang Wang,et al.  Solving Random Systems of Quadratic Equations via Truncated Generalized Gradient Flow , 2016, NIPS.

[76]  Mahdi Soltanolkotabi,et al.  Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization , 2017, IEEE Transactions on Information Theory.

[77]  Andrea Montanari,et al.  The Noise-Sensitivity Phase Transition in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[78]  Yuantao Gu,et al.  Phase retrieval using iterative projections: Dynamics in the large systems limit , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[79]  Andrea Montanari,et al.  Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..

[80]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[81]  Yingbin Liang,et al.  Reshaped Wirtinger Flow for Solving Quadratic System of Equations , 2016, NIPS.

[82]  Yue M. Lu,et al.  Fundamental limits of phasemax for phase retrieval: A replica analysis , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[83]  R. Speicher Free Convolution and the Random Sum of Matrices , 1993 .

[84]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.