Predicting Gene Ontology Function of Human MicroRNAs by Integrating Multiple Networks

MicroRNAs (miRNAs) have been demonstrated to play significant biological roles in many human biological processes. Inferring the functions of miRNAs is an important strategy for understanding disease pathogenesis at the molecular level. In this paper, we propose an integrated model, PmiRGO, to infer the gene ontology (GO) functions of miRNAs by integrating multiple data sources, including the expression profiles of miRNAs, miRNA-target interactions, and protein-protein interactions (PPI). PmiRGO starts by building a global network consisting of three networks. Then, it employs DeepWalk to learn latent representations as network features of the global heterogeneous network. Finally, the SVM-based models are applied to label the GO terms of miRNAs. The experimental results show that PmiRGO has a significantly better performance than existing state-of-the-art methods in terms of Fmax. A case study further demonstrates the feasibility of PmiRGO to annotate the potential functions of miRNAs.

[1]  Jingpu Zhang,et al.  KATZLGO: Large-Scale Prediction of LncRNA Functions by Using the KATZ Measure Based on Multiple Networks , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[2]  Jingpu Zhang,et al.  Integrating Multiple Heterogeneous Networks for Novel LncRNA-Disease Association Inference , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[3]  Wei Chen,et al.  Predicting protein structural classes for low-similarity sequences by evaluating different features , 2019, Knowl. Based Syst..

[4]  Hao Lv,et al.  Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique , 2018, Bioinform..

[5]  Wei Chen,et al.  iRNA-2OM: A Sequence-Based Predictor for Identifying 2′-O-Methylation Sites in Homo sapiens , 2018, J. Comput. Biol..

[6]  Yan Lin,et al.  iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators , 2018, Bioinform..

[7]  A. Khan,et al.  miRNA‐124‐3p/neuropilin‐1(NRP‐1) axis plays an important role in mediating glioblastoma growth and angiogenesis , 2018, International journal of cancer.

[8]  Cheng Zeng,et al.  SDADB: a functional annotation database of protein structural domains , 2018, Database J. Biol. Databases Curation.

[9]  Lei Deng,et al.  Probing the functions of long non-coding RNAs by exploiting the topology of global association and interaction network , 2018, Comput. Biol. Chem..

[10]  Zixiang Wang,et al.  Ontological function annotation of long non‐coding RNAs through hierarchical multi‐label classification , 2018, Bioinform..

[11]  Zixiang Wang,et al.  Computational identification of binding energy hot spots in protein–RNA complexes using an ensemble approach , 2018, Bioinform..

[12]  Xiangxiang Zeng,et al.  Prediction of potential disease-associated microRNAs using structural perturbation method , 2017, bioRxiv.

[13]  Wang-Chien Lee,et al.  HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning , 2017, CIKM.

[14]  Zhaohui Qi,et al.  Recent Progress in Long Noncoding RNAs Prediction , 2017, Current Bioinformatics.

[15]  A. Swami,et al.  metapath2vec: Scalable Representation Learning for Heterogeneous Networks , 2017, KDD.

[16]  Jingpu Zhang,et al.  Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks , 2017, Scientific Reports.

[17]  Yuanfang Guan,et al.  miRmine: a database of human miRNA expression profiles , 2017, Bioinform..

[18]  Wei Chen,et al.  Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines , 2017, Scientific Reports.

[19]  The Gene Ontology Consortium,et al.  Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[20]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[21]  Q. Zou,et al.  Cancer Diagnosis Through IsomiR Expression with Machine Learning Method , 2016 .

[22]  Q. Zou,et al.  Protein Folds Prediction with Hierarchical Structured SVM , 2016 .

[23]  Christina Backes,et al.  miEAA: microRNA enrichment analysis and annotation , 2016, Nucleic Acids Res..

[24]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[25]  Deli Zhao,et al.  Network Representation Learning with Rich Text Information , 2015, IJCAI.

[26]  Q. Zou,et al.  Similarity computation strategies in the microRNA-disease network: a survey. , 2015, Briefings in functional genomics.

[27]  L. Deng,et al.  An Integrated Framework for Functional Annotation of Protein Structural Domains , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  Zhiyuan Liu,et al.  Inferring Correspondences from Multiple Sources for Microblog User Tags , 2014, SMP.

[29]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[30]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[31]  Lingling Hu,et al.  miRClassify: An advanced web server for miRNA family classification and annotation , 2014, Comput. Biol. Medicine.

[32]  Yue Gao,et al.  Improved and promising identification of human MicroRNAs by incorporating a high-quality negative set , 2014, TCBB.

[33]  J. Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[34]  Quan Zou,et al.  Computational Analysis of miRNA Target Identification , 2012 .

[35]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[37]  Maozu Guo,et al.  In silico Detection of Novel MicroRNAs Genes in Soybean Genome , 2011 .

[38]  Yong Huang,et al.  Biological functions of microRNAs: a review , 2011, Journal of Physiology and Biochemistry.

[39]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[40]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[41]  R. Shamir,et al.  Towards computational prediction of microRNA function and activity , 2010, Nucleic acids research.

[42]  Nectarios Koziris,et al.  DIANA-microT web server: elucidating microRNA functions through target prediction , 2009, Nucleic Acids Res..

[43]  Rachael P. Huntley,et al.  The Gene Ontology Annotation (GOA) Database , 2009 .

[44]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[45]  Geoffrey E. Hinton,et al.  A Scalable Hierarchical Distributed Language Model , 2008, NIPS.

[46]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[47]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[48]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[49]  Christina Backes,et al.  GeneTrail—advanced gene set enrichment analysis , 2007, Nucleic Acids Res..

[50]  E. Miska,et al.  How microRNAs control cell division, differentiation and death. , 2005, Current opinion in genetics & development.

[51]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[52]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[53]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[54]  T. Tuschl,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[55]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[56]  J. Barbiere,et al.  Cancer diagnosis. , 2015, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[57]  R. Ji,et al.  Improved and Promising Identification of Human MicroRNAs by Incorporating a High-Quality Negative Set , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[58]  C. Helliwell,et al.  Regulation of flowering time and floral patterning by miR172. , 2011, Journal of experimental botany.

[59]  Shen Jing-ying Expression of CD151 and its clinical significance in colorectal carcinoma , 2009 .

[60]  Lise Getoor,et al.  Collective Classi!cation in Network Data , 2008 .

[61]  P. Robinson,et al.  Efficient Estimation of the , 2007 .

[62]  A. Krishnamachari,et al.  Computational analysis of plant RNA Pol-II promoters. , 2006, Bio Systems.

[63]  Yoshua Bengio,et al.  Hierarchical Probabilistic Neural Network Language Model , 2005, AISTATS.

[64]  Anton J. Enright,et al.  MicroRNA Targets in Drosophila , 2003, Genome Biology.