Mechanism study of initial filamentary damage in optical components owing to surface contamination particles

Contaminations existing inevitably in high-power laser facilities modulate laser beams and decrease beam quality. This study set up a detection system to study the mechanism of initial filamentary damage in optical components induced by surface contaminations. The effect of ordinary solid particles, liquid particles, and solid-liquid mixed particles on the near-field intensity distribution of laser beam was studied and analyzed statistically. The experiment results show that pure solid particles make the beam generate diffraction rings with dark center usually in the shadow of the particles which is a weak intensity modulation; pure liquid particles focus the localized beam into a bright spot rapidly, but it is diffracted away soon; solid-liquid mixed particles cause diffraction rings with strongly bright center, but the high local intensity can be diffracted away only after a longer distance, which is one of the reason that induces the initial filamentary damage to optical components. The research results can predict the likelihood of component damage, and the corresponding preventive measures help to keep the safe operation of high-power laser facilities.