Brainiac: a Graph-Based Literature Visualization

Nowadays, users face the problem of too much information available. A user trying to research into a new topic will face a collection of context-specific documents, and exploring this collection may require knowledge on specific concepts that is only available with more experienced users. In this work, we address this problem, in the neuroscience context, creating a visualization, in collaboration with Instituto de Biofı́sica e Engenharia Biomédica (IBEB), that helps users analyzing a collection of documents, indicating documents that may be similar. The developed visualization has potential to help users in this context, by interacting with different views, it allows to combine a document search by similarity and by different topics. We conducted an evaluation, to measure the usability of the developed application, and its utility, to validate the data visualized. The results from the usability test were very good, with no obvious interface problem. Validation of the processed data also show good results, with room for improvement with some errors detected in text processing.

[1]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[2]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[3]  Jakob Nielsen,et al.  Usability engineering , 1997, The Computer Science and Engineering Handbook.

[4]  E. Toms,et al.  Serendipitous Information Retrieval , 2000, DELOS.

[5]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[6]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[7]  Nigel Ford,et al.  Serendipity and information seeking: an empirical study , 2003, J. Documentation.

[8]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[9]  Ryen W. White,et al.  Supporting Exploratory Search, Introduction, Special Issue, Communications of the ACM , 2006 .

[10]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[11]  Yusef Hassan-Montero,et al.  Improving Tag-Clouds as Visual Information Retrieval Interfaces , 2024, 2401.04947.

[12]  James T. Miller,et al.  An Empirical Evaluation of the System Usability Scale , 2008, Int. J. Hum. Comput. Interact..

[13]  Martin Wattenberg,et al.  The Word Tree, an Interactive Visual Concordance , 2008, IEEE Transactions on Visualization and Computer Graphics.

[14]  M. Sheelagh T. Carpendale,et al.  DocuBurst: Visualizing Document Content using Language Structure , 2009, Comput. Graph. Forum.

[15]  Philip T. Kortum,et al.  Determining what individual SUS scores mean: adding an adjective rating scale , 2009 .

[16]  Raimund Dachselt,et al.  PaperLens: advanced magic lens interaction above the tabletop , 2009, ITS '09.

[17]  Susan T. Dumais,et al.  Discovery is never by chance: designing for (un)serendipity , 2009, C&C '09.

[18]  Martin Wattenberg,et al.  Participatory Visualization with Wordle , 2009, IEEE Transactions on Visualization and Computer Graphics.

[19]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[20]  Ralf Dörner,et al.  Interactive visualization for opportunistic exploration of large document collections , 2010, Inf. Syst..

[21]  Jimeng Sun,et al.  FacetAtlas: Multifaceted Visualization for Rich Text Corpora , 2010, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jia-Kai Chou,et al.  PaperVis: Literature Review Made Easy , 2011, Comput. Graph. Forum.

[23]  M. Sheelagh T. Carpendale,et al.  The bohemian bookshelf: supporting serendipitous book discoveries through information visualization , 2012, CHI.

[24]  Jeffrey Heer,et al.  Interpretation and trust: designing model-driven visualizations for text analysis , 2012, CHI.

[25]  John T. Stasko,et al.  Combining Computational Analyses and Interactive Visualization for Document Exploration and Sensemaking in Jigsaw , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[27]  Chris C. Tang,et al.  Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases , 2016, Neurology.

[28]  J. Dukart,et al.  Regional volumetric change in Parkinson's disease with cognitive decline , 2017, Journal of the Neurological Sciences.