Approximation Algorithms for a Variant of discrete Piercing Set Problem for Unit Disks

In this paper, we consider constant factor approximation algorithms for a variant of the discrete piercing set problem for unit disks. Here a set of points P is given; the objective is to choose minimum number of points in P to pierce the unit disks centered at all the points in P. We first propose a very simple algorithm that produces 12-approximation result in O(n log n) time. Next, we improve the approximation factor to 4 and then to 3. The worst case running time of these algorithms are O(n8log n) and O(n15log n) respectively. Apart from the space required for storing the input, the extra work-space requirement for each of these algorithms is O(1). Finally, we propose a PTAS for the same problem. Given a positive integer k, it can produce a solution with performance ratio in nO(k) time.

[1]  Johann Hurink,et al.  A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs , 2005, WAOA.

[2]  Matthew J. Katz,et al.  Polynomial-time approximation schemes for piercing and covering with applications in wireless networks , 2008, Comput. Geom..

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Wolfgang Maass,et al.  Approximation schemes for covering and packing problems in image processing and VLSI , 1985, JACM.

[5]  Matthew J. Katz,et al.  Covering Points by Unit Disks of Fixed Location , 2007, ISAAC.

[6]  Timothy M. Chan Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..

[7]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[8]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[9]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[10]  Imran A. Pirwani,et al.  A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs , 2010, SWAT.

[11]  Timothy M. Chan Polynomial-time approximation schemes for packing and piercing fat objects , 2003, J. Algorithms.

[12]  Weili Wu,et al.  New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs , 2011, Theor. Comput. Sci..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Matt Gibson,et al.  Algorithms for Dominating Set in Disk Graphs: Breaking the logn Barrier - (Extended Abstract) , 2010, ESA.

[15]  Alejandro López-Ortiz,et al.  On the discrete Unit Disk Cover Problem , 2011, Int. J. Comput. Geom. Appl..

[16]  Petr Vojtechovský,et al.  An Improved Approximation Factor For The Unit Disk Covering Problem , 2006, CCCG.

[17]  Timothy M. Chan,et al.  Approximation Algorithms for Maximum Independent Set of Pseudo-Disks , 2009, Discrete & Computational Geometry.

[18]  Ion I. Mandoiu,et al.  Selecting Forwarding Neighbors in Wireless Ad Hoc Networks , 2001, DIALM '01.

[19]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[20]  Thomas Erlebach,et al.  Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs , 2006, APPROX-RANDOM.

[21]  Timothy M. Chan,et al.  Approximating the piercing number for unit-height rectangles , 2005, CCCG.

[22]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[23]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[24]  Stephane Durocher,et al.  An Improved Line-Separable Algorithm for Discrete Unit Disk Cover , 2010, Discret. Math. Algorithms Appl..

[25]  János Pach,et al.  Minimum Clique Partition in Unit Disk Graphs , 2009, Graphs Comb..

[26]  Teofilo F. Gonzalez,et al.  Covering a Set of Points in Multidimensional Space , 1991, Inf. Process. Lett..

[27]  Changyuan Yu,et al.  A 5+epsilon-approximation algorithm for minimum weighted dominating set in unit disk graph , 2009, Theor. Comput. Sci..

[28]  Alejandro López-Ortiz,et al.  The Within-Strip Discrete Unit Disk Cover Problem , 2017, CCCG.

[29]  Micha Sharir,et al.  The Discrete 2-Center Problem , 1997, SCG '97.

[30]  Nabil H. Mustafa,et al.  Improved Results on Geometric Hitting Set Problems , 2010, Discret. Comput. Geom..

[31]  Robert B. Allan,et al.  On domination and independent domination numbers of a graph , 1978, Discret. Math..

[32]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[33]  Tibor Csendes,et al.  Packing Equal Circles in a Square II. — New Results for up to 100 Circles Using the TAMSASS-PECS Algorithm , 2001 .

[34]  Jan Vahrenhold,et al.  On the Space Efficiency of the "Ultimate Planar Convex Hull Algorithm" , 2012, CCCG.

[35]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[36]  Weili Wu,et al.  A better constant-factor approximation for weighted dominating set in unit disk graph , 2009, J. Comb. Optim..

[37]  David G. Kirkpatrick,et al.  Algorithmic aspects of constrained unit disk graphs , 1996 .

[38]  Luérbio Faria,et al.  On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation , 2004, Electron. Notes Discret. Math..

[39]  Decheng Dai,et al.  A 5 +-approximation algorithm for minimum weighted dominating set in unit disk graph , 2009 .