Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets

We use a semianalytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus, giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 to 3 -->M?. Stars more massive than 3 -->M? evolve quickly to the main sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar mass stars is 6%, we predict occurrence rates of 1% for 0.4 -->M? stars and 10% for 1.5 -->M? stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars 2.5 -->M? move to the main sequence may allow the ocean planets suggested by L?ger et al. to form without migration.

[1]  S. Wolf,et al.  Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks around Sun-like Stars , 2006, astro-ph/0606669.

[2]  Fast Accretion of Small Planetesimals by Protoplanetary Cores , 2003, astro-ph/0311440.

[3]  T. Nakano Formation of planets around stars of various masses. I - Formulation and a star of one solar mass , 1987 .

[4]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006 .

[5]  T. Nakano Formation of planets around stars of various masses – III. Massive and small-mass stars and the regions of planet formation , 1988 .

[6]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[7]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[8]  R. Sari,et al.  Final Stages of Planet Formation , 2004, astro-ph/0404240.

[9]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[10]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[11]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[12]  J. Cuzzi,et al.  Material Enhancement in Protoplanetary Nebulae by Particle Drift through Evaporation Fronts , 2004, astro-ph/0409276.

[13]  S. Wolf,et al.  Formation of giant planets around stars with various masses , 2006, astro-ph/0606094.

[14]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[15]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[16]  L. Hillenbrand,et al.  Accretion in Young Stellar/Substellar Objects , 2003, astro-ph/0304078.

[17]  T. Jenness,et al.  Structure in the ∊ Eridani Debris Disk , 2005 .

[18]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[19]  S. Inaba,et al.  Enhanced collisional growth of a protoplanet that has an atmosphere , 2003 .

[20]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[21]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[22]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[23]  On the Location of the Snow Line in a Protoplanetary Disk , 2006, astro-ph/0602217.

[24]  U. Gorti,et al.  Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates , 2004, astro-ph/0404383.

[25]  S. Kenyon,et al.  Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths , 2006, astro-ph/0609140.

[26]  S Ida,et al.  Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses , 2005 .

[27]  E. Kokubo,et al.  ON RUNAWAY GROWTH OF PLANETESIMALS , 1996 .

[28]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[29]  G. Blake,et al.  TEXES Observations of Pure Rotational H2 Emission from AB Aurigae , 2007, 0704.1481.

[30]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[31]  S. Beckwith,et al.  Millimeter-wave continuum measurements of young stars , 1995 .

[32]  G. Rieke,et al.  Spitzer IRAC and JHKs Observations of h and χ Persei: Constraints on Protoplanetary Disk and Massive Cluster Evolution at ~107 Years , 2007, astro-ph/0701441.

[33]  Rapid Formation of Gas Giant Planets around M Dwarf Stars , 2006, astro-ph/0601486.

[34]  F. Adams,et al.  Infrared Spectra of Rotating Protostars , 1986 .

[35]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[36]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[37]  R. Rafikov Atmospheres of Protoplanetary Cores: Critical Mass for Nucleated Instability , 2004, astro-ph/0405507.

[38]  S. Inaba,et al.  Formation of gas giant planets: core accretion models with fragmentation and planetary envelope , 2003 .

[39]  E. Ford,et al.  The Formation of Ice Giants in a Packed Oligarchy: Instability and Aftermath , 2007, astro-ph/0701745.

[40]  On the migration of protogiant solid cores , 2006, astro-ph/0607155.

[41]  M. Podolak,et al.  A note on the snow line in protostellar accretion disks , 2004 .

[42]  COLLISIONAL CASCADES IN PLANETESIMAL DISKS. II. EMBEDDED PLANETS , 2003, astro-ph/0309540.

[43]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[44]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[45]  J. Chambers Planet Formation with Migration , 2006, astro-ph/0610905.

[46]  M. Skrutskie,et al.  in Protostars and Planets III , 1993 .

[47]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[48]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[49]  J. Carpenter,et al.  Massive Protoplanetary Disks in the Trapezium Region , 2006, astro-ph/0601033.

[50]  S. Kenyon,et al.  Detecting the Dusty Debris of Terrestrial Planet Formation , 2004, astro-ph/0401343.

[51]  R. Jayawardhana,et al.  Exploring brown dwarf disks : A 1.3 mm survey in taurus , 2006, astro-ph/0603619.

[52]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[53]  I. Hubeny Vertical structure of accretion disks: A simplified analytical model , 1990 .

[54]  T. Nakano Formation of planets around stars of various masses – II. Stars of two and three solar masses and the origin and evolution of circumstellar dust clouds , 1988 .

[55]  Harold F. Levison,et al.  The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System , 1999, Nature.

[56]  L. Pasquini,et al.  Evolved stars suggest an external origin of the enhanced metallicity in planet-hosting stars , 2007, 0707.0788.

[57]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[58]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[59]  Jason T. Wright,et al.  Retired A Stars and Their Companions: Exoplanets Orbiting Three Intermediate-Mass Subgiants , 2007, 0704.2455.

[60]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[61]  N. Thomas,et al.  A large dust/ice ratio in the nucleus of comet 9P/Tempel 1 , 2005, Nature.

[62]  Richard P. Nelson,et al.  The interaction of giant planets with a disc with MHD turbulence – IV. Migration rates of embedded protoplanets , 2003, astro-ph/0308360.

[63]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[64]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[65]  R. P. Butler,et al.  Discovery of a Substellar Companion to the K2 III Giant ι Draconis , 2002 .

[66]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[67]  Masahiro Ikoma,et al.  Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity , 2000 .

[68]  Mark J. McCaughrean,et al.  Direct Imaging of Circumstellar Disks in the Orion Nebula , 1996 .

[69]  D. Sasselov,et al.  On the Snow Line in Dusty Protoplanetary Disks , 1999, astro-ph/9911390.

[70]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[71]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[72]  The Effect of Internal Dissipation and Surface Irradiation on the Structure of Disks and the Location of the Snow Line around Sun-like Stars , 2006, astro-ph/0605110.

[73]  A Long‐Period Jupiter‐Mass Planet Orbiting the Nearby M Dwarf GJ 849 , 2006, astro-ph/0610179.

[74]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[75]  Jeffrey N. Cuzzi,et al.  The evolution of the water distribution in a viscous protoplanetary disk , 2005, astro-ph/0511372.

[76]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[77]  Circumstellar Disks in the IC 348 Cluster , 2001, astro-ph/0101486.

[78]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .