Early Release Science of the exoplanet WASP-39b with JWST NIRCam

Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. ) provides the necessary means by constraining the abundances of oxygenand carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report timeseries observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. ) or disequilibrium processes in the upper atmosphere (for example, refs. ).

[1]  Miguel de Val-Borro,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H , 2022, Nature.

[2]  A. D. Feinstein,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM , 2023, Nature.

[3]  Tucson,et al.  Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.

[4]  H. Isaacson,et al.  Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec , 2022, Research Notes of the AAS.

[5]  A. D. Feinstein,et al.  Eureka!: An End-to-End Pipeline for JWST Time-Series Observations , 2022, J. Open Source Softw..

[6]  T. Guillot,et al.  The Origin and Evolution of Saturn: A Post-Cassini Perspective , 2022, 2205.06914.

[7]  J. Fortney,et al.  Publisher Correction: A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere , 2021, Nature.

[8]  D. Bayliss,et al.  Scintillation-limited photometry with the 20-cm NGTS telescopes at Paranal Observatory , 2021, 2111.10321.

[9]  S. Grimm,et al.  3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT: A GPU-accelerated MCRT Code , 2021, 2110.15640.

[10]  M. Min,et al.  Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra Indication of disequilibrium chemistry for HD 209458b and WASP-39b , 2021, Astronomy & Astrophysics.

[11]  M. Marley,et al.  A New Sedimentation Model for Greater Cloud Diversity in Giant Exoplanets and Brown Dwarfs , 2021, The Astrophysical Journal.

[12]  R. Hu Photochemistry and Spectral Characterization of Temperate and Gas-rich Exoplanets , 2021, The Astrophysical Journal.

[13]  K. Heng,et al.  A Comparative Study of Atmospheric Chemistry with VULCAN , 2021, The Astrophysical Journal.

[14]  Adam J. R. W. Smith,et al.  The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium , 2021, The Astrophysical Journal.

[15]  D. Charbonneau,et al.  The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination , 2021, The Astronomical Journal.

[16]  Timothy D. Brandt,et al.  'exoplanet': Gradient-based probabilistic inference for exoplanet data & other astronomical time series , 2021, J. Open Source Softw..

[17]  K. H. Yip,et al.  ARES. V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b , 2021, The Astronomical Journal.

[18]  C. Sotin,et al.  Detection of an Atmosphere on a Rocky Exoplanet , 2021, The Astronomical Journal.

[19]  J. Lothringer,et al.  A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters , 2020, 2011.10626.

[20]  J. Leisenring,et al.  JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series , 2020, The Astronomical Journal.

[21]  G. Tinetti,et al.  KELT-11 b: Abundances of Water and Constraints on Carbon-bearing Molecules from the Hubble Transmission Spectrum , 2020, The Astronomical Journal.

[22]  N. Lewis,et al.  A library of self-consistent simulated exoplanet atmospheres , 2020, Monthly Notices of the Royal Astronomical Society.

[23]  T. Henning,et al.  The Role of Clouds on the Depletion of Methane and Water Dominance in the Transmission Spectra of Irradiated Exoplanets , 2020, The Astrophysical Journal.

[24]  Iva Laginja,et al.  ExoTiC-ISM: A Python package for marginalised exoplanet transit parameters across a grid of systematic instrument models , 2020, J. Open Source Softw..

[25]  T. Barman,et al.  The PHOENIX Exoplanet Retrieval Algorithm and Using H− Opacity as a Probe in Ultrahot Jupiters , 2020, The Astronomical Journal.

[26]  David J. Armstrong,et al.  Simultaneous TESS and NGTS transit observations of WASP-166 b , 2020, 2004.07589.

[27]  Shannon T. Brown,et al.  The water abundance in Jupiter’s equatorial zone , 2020, Nature Astronomy.

[28]  N. Abraham,et al.  Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model , 2020, Astronomy & Astrophysics.

[29]  F. Spiegelman,et al.  Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.

[30]  N. Madhusudhan,et al.  HyDRA-H: Simultaneous Hybrid Retrieval of Exoplanetary Emission Spectra , 2019, The Astronomical Journal.

[31]  P. Lagage,et al.  The ExoTETHyS Package: Tools for Exoplanetary Transits around Host Stars , 2019, The Astronomical Journal.

[32]  T. Henning,et al.  From Cold to Hot Irradiated Gaseous Exoplanets: Fingerprints of Chemical Disequilibrium in Atmospheric Spectra , 2019, The Astrophysical Journal.

[33]  I. Skillen,et al.  LRG-BEASTS: Transmission Spectroscopy and Retrieval Analysis of the Highly Inflated Saturn-mass Planet WASP-39b , 2019, The Astronomical Journal.

[34]  M. Marley,et al.  Exoplanet Reflected-light Spectroscopy with PICASO , 2019, The Astrophysical Journal.

[35]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[36]  David P. Fleming,et al.  starry: Analytic Occultation Light Curves , 2018, 1810.06559.

[37]  J. Lothringer,et al.  The Effect of 3D Transport-induced Disequilibrium Carbon Chemistry on the Atmospheric Structure, Phase Curves, and Emission Spectra of Hot Jupiter HD 189733b , 2018, The Astrophysical Journal.

[38]  Sergei N. Yurchenko,et al.  The ExoMol Atlas of Molecular Opacities , 2018, 1805.03711.

[39]  Gregory S. Tucker,et al.  The Transiting Exoplanet Community Early Release Science Program for JWST , 2018, Publications of the Astronomical Society of the Pacific.

[40]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[41]  Nikolay Nikolov,et al.  A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.

[42]  Kevin Heng,et al.  Optical properties of potential condensates in exoplanetary atmospheres , 2017, 1710.04946.

[43]  J. Hagelberg,et al.  Signs of strong Na and K absorption in the transmission spectrum of WASP-103b , 2017, 1708.05737.

[44]  Jarron Leisenring,et al.  λ = 2.4 to 5  μm spectroscopy with the James Webb Space Telescope NIRCam instrument , 2017 .

[45]  Nikku Madhusudhan,et al.  On signatures of clouds in exoplanetary transit spectra , 2017, 1705.08893.

[46]  Angelos Tsiaras,et al.  High-precision Stellar Limb-darkening in Exoplanetary Transits , 2017, 1704.08232.

[47]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[48]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[49]  M. Ali-Dib Disentangling hot Jupiters formation location from their chemical composition , 2016, 1611.03128.

[50]  I. Baraffe,et al.  The Effects of Consistent Chemical Kinetics Calculations on the Pressure-Temperature Profiles and Emission Spectra of Hot Jupiters , 2016, 1607.04062.

[51]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[52]  G. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[53]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[54]  M. Lendl,et al.  FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b , 2015, 1512.06698.

[55]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[56]  A. A. Azzam,et al.  The dipole moment surface for hydrogen sulfide H2S , 2015 .

[57]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[58]  Gilles Chabrier,et al.  FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES , 2015, 1504.03334.

[59]  R. Freedman,et al.  Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .

[60]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[61]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[62]  Sergei N. Yurchenko,et al.  ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.

[63]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[64]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[65]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[66]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[67]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[68]  Sergei N. Yurchenko,et al.  Vibrational transition moments of CH4 from first principles , 2013, 1302.1720.

[69]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[70]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[71]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[72]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[73]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[74]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[75]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[76]  M. Holman,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2009 .

[77]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[78]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[79]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[80]  D. Saumon,et al.  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[81]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[82]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[83]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[84]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[85]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[86]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[87]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[88]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[89]  R. Pudritz,et al.  Connecting planet formation and astrochemistry A main sequence for C/O in hot-exoplanetary atmospheres , 2019 .

[90]  J. Blecic,et al.  Equilibrium chemistry down to 100 K Impact of silicates and phyllosilicates on the carbon to oxygen ratio , 2018 .

[91]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[92]  A. Showman,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006 .

[93]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[94]  U. Fink,et al.  The infrared spectrum of Jupiter. , 1976 .