Early Release Science of the exoplanet WASP-39b with JWST NIRCam
暂无分享,去创建一个
A. D. Feinstein | G. Tucker | N. Crouzet | D. Bayliss | J. Gizis | P. Lagage | J. Bean | L. Decin | L. Mancini | N. Batalha | E. Schlawin | I. Crossfield | Z. Berta-Thompson | J. Leconte | K. Heng | M. Burleigh | E. Pallé | B. Benneke | H. Knutson | J. Lothringer | S. Casewell | P. Wheatley | S. Kendrew | N. Lewis | M. Line | T. Beatty | N. Batalha | N. Iro | K. Stevenson | K. Molaverdikhani | J. Harrington | T. Komacek | E. Kempton | M. Mansfield | N. Gibson | K. Chubb | Y. Miguel | O. Venot | Shang-min Tsai | P. Tremblin | J. Blecic | E. Shkolnik | B. Rackham | C. Murray | J. Kirk | P. Cubillos | M. Lendl | D. Sing | R. Hu | G. Morello | L. Carone | V. Parmentier | L. Kreidberg | E. Bryant | S. Gill | J. Barstow | N. Nikolov | H. Wakeford | T. Daylan | J. Lustig-Yaeger | M. Damiano | Jake Taylor | Q. Changeat | T. Mikal-Evans | J. Goyal | A. Carter | N. Mayne | M. de Val-Borro | L. Flagg | Z. Rustamkulov | L. Welbanks | S. Redfield | S. Moran | J. Brande | D. Petit dit de la Roche | E. May | K. Ohno | M. Battley | C. Piaulet | Laura K. Rogers | M. Alam | D. Anderson | R. MacDonald | J. D'esert | Xi Zhang | E. Ahrer | L. Alderson | S. Mukherjee | J. Fortney | N. Allen | T. Bell | P. Roy | K. Sotzen | N. Espinoza | Sebastian Zieba | P. Gao | D. Powell | J. Turner | M. López-Morales
[1] Miguel de Val-Borro,et al. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H , 2022, Nature.
[2] A. D. Feinstein,et al. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM , 2023, Nature.
[3] Tucson,et al. Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.
[4] H. Isaacson,et al. Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec , 2022, Research Notes of the AAS.
[5] A. D. Feinstein,et al. Eureka!: An End-to-End Pipeline for JWST Time-Series Observations , 2022, J. Open Source Softw..
[6] T. Guillot,et al. The Origin and Evolution of Saturn: A Post-Cassini Perspective , 2022, 2205.06914.
[7] J. Fortney,et al. Publisher Correction: A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere , 2021, Nature.
[8] D. Bayliss,et al. Scintillation-limited photometry with the 20-cm NGTS telescopes at Paranal Observatory , 2021, 2111.10321.
[9] S. Grimm,et al. 3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT: A GPU-accelerated MCRT Code , 2021, 2110.15640.
[10] M. Min,et al. Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra Indication of disequilibrium chemistry for HD 209458b and WASP-39b , 2021, Astronomy & Astrophysics.
[11] M. Marley,et al. A New Sedimentation Model for Greater Cloud Diversity in Giant Exoplanets and Brown Dwarfs , 2021, The Astrophysical Journal.
[12] R. Hu. Photochemistry and Spectral Characterization of Temperate and Gas-rich Exoplanets , 2021, The Astrophysical Journal.
[13] K. Heng,et al. A Comparative Study of Atmospheric Chemistry with VULCAN , 2021, The Astrophysical Journal.
[14] Adam J. R. W. Smith,et al. The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium , 2021, The Astrophysical Journal.
[15] D. Charbonneau,et al. The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination , 2021, The Astronomical Journal.
[16] Timothy D. Brandt,et al. 'exoplanet': Gradient-based probabilistic inference for exoplanet data & other astronomical time series , 2021, J. Open Source Softw..
[17] K. H. Yip,et al. ARES. V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b , 2021, The Astronomical Journal.
[18] C. Sotin,et al. Detection of an Atmosphere on a Rocky Exoplanet , 2021, The Astronomical Journal.
[19] J. Lothringer,et al. A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters , 2020, 2011.10626.
[20] J. Leisenring,et al. JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series , 2020, The Astronomical Journal.
[21] G. Tinetti,et al. KELT-11 b: Abundances of Water and Constraints on Carbon-bearing Molecules from the Hubble Transmission Spectrum , 2020, The Astronomical Journal.
[22] N. Lewis,et al. A library of self-consistent simulated exoplanet atmospheres , 2020, Monthly Notices of the Royal Astronomical Society.
[23] T. Henning,et al. The Role of Clouds on the Depletion of Methane and Water Dominance in the Transmission Spectra of Irradiated Exoplanets , 2020, The Astrophysical Journal.
[24] Iva Laginja,et al. ExoTiC-ISM: A Python package for marginalised exoplanet transit parameters across a grid of systematic instrument models , 2020, J. Open Source Softw..
[25] T. Barman,et al. The PHOENIX Exoplanet Retrieval Algorithm and Using H− Opacity as a Probe in Ultrahot Jupiters , 2020, The Astronomical Journal.
[26] David J. Armstrong,et al. Simultaneous TESS and NGTS transit observations of WASP-166 b , 2020, 2004.07589.
[27] Shannon T. Brown,et al. The water abundance in Jupiter’s equatorial zone , 2020, Nature Astronomy.
[28] N. Abraham,et al. Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model , 2020, Astronomy & Astrophysics.
[29] F. Spiegelman,et al. Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.
[30] N. Madhusudhan,et al. HyDRA-H: Simultaneous Hybrid Retrieval of Exoplanetary Emission Spectra , 2019, The Astronomical Journal.
[31] P. Lagage,et al. The ExoTETHyS Package: Tools for Exoplanetary Transits around Host Stars , 2019, The Astronomical Journal.
[32] T. Henning,et al. From Cold to Hot Irradiated Gaseous Exoplanets: Fingerprints of Chemical Disequilibrium in Atmospheric Spectra , 2019, The Astrophysical Journal.
[33] I. Skillen,et al. LRG-BEASTS: Transmission Spectroscopy and Retrieval Analysis of the Highly Inflated Saturn-mass Planet WASP-39b , 2019, The Astronomical Journal.
[34] M. Marley,et al. Exoplanet Reflected-light Spectroscopy with PICASO , 2019, The Astrophysical Journal.
[35] R. MacDonald,et al. H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.
[36] David P. Fleming,et al. starry: Analytic Occultation Light Curves , 2018, 1810.06559.
[37] J. Lothringer,et al. The Effect of 3D Transport-induced Disequilibrium Carbon Chemistry on the Atmospheric Structure, Phase Curves, and Emission Spectra of Hot Jupiter HD 189733b , 2018, The Astrophysical Journal.
[38] Sergei N. Yurchenko,et al. The ExoMol Atlas of Molecular Opacities , 2018, 1805.03711.
[39] Gregory S. Tucker,et al. The Transiting Exoplanet Community Early Release Science Program for JWST , 2018, Publications of the Astronomical Society of the Pacific.
[40] Nikole K. Lewis,et al. The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.
[41] Nikolay Nikolov,et al. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.
[42] Kevin Heng,et al. Optical properties of potential condensates in exoplanetary atmospheres , 2017, 1710.04946.
[43] J. Hagelberg,et al. Signs of strong Na and K absorption in the transmission spectrum of WASP-103b , 2017, 1708.05737.
[44] Jarron Leisenring,et al. λ = 2.4 to 5 μm spectroscopy with the James Webb Space Telescope NIRCam instrument , 2017 .
[45] Nikku Madhusudhan,et al. On signatures of clouds in exoplanetary transit spectra , 2017, 1705.08893.
[46] Angelos Tsiaras,et al. High-precision Stellar Limb-darkening in Exoplanetary Transits , 2017, 1704.08232.
[47] I. P. Waldmann,et al. A Population Study of Gaseous Exoplanets , 2017, 1704.05413.
[48] Jonathan Fortney,et al. Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.
[49] M. Ali-Dib. Disentangling hot Jupiters formation location from their chemical composition , 2016, 1611.03128.
[50] I. Baraffe,et al. The Effects of Consistent Chemical Kinetics Calculations on the Pressure-Temperature Profiles and Emission Spectra of Hot Jupiters , 2016, 1607.04062.
[51] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[52] G. Tucker,et al. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.
[53] A. Burrows,et al. HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.
[54] M. Lendl,et al. FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b , 2015, 1512.06698.
[55] T. Evans,et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.
[56] A. A. Azzam,et al. The dipole moment surface for hydrogen sulfide H2S , 2015 .
[57] Laura Kreidberg,et al. batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.
[58] Gilles Chabrier,et al. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES , 2015, 1504.03334.
[59] R. Freedman,et al. Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .
[60] Sara Seager,et al. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.
[61] Vivien Parmentier,et al. Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.
[62] Sergei N. Yurchenko,et al. ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.
[63] Drake Deming,et al. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.
[64] D. Kipping. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.
[65] S. Seager,et al. HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.
[66] Andreas Seifahrt,et al. TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.
[67] Nigel Bannister,et al. Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.
[68] Sergei N. Yurchenko,et al. Vibrational transition moments of CH4 from first principles , 2013, 1302.1720.
[69] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[70] J. Tennyson,et al. ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.
[71] Edwin A. Bergin,et al. THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.
[72] L. Sromovsky,et al. Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.
[73] R. G. West,et al. WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.
[74] Nikole K. Lewis,et al. DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.
[75] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[76] M. Holman,et al. Transiting Exoplanet Survey Satellite (TESS) , 2009 .
[77] G. Orton,et al. Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .
[78] R. Trotta. Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.
[79] R. Tolchenov,et al. A high-accuracy computed water line list , 2006, astro-ph/0601236.
[80] D. Saumon,et al. Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.
[81] T. Owen,et al. Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .
[82] B. Fegley,et al. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .
[83] P. Dokkum,et al. Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.
[84] Peter H. Hauschildt,et al. Irradiated planets , 2001, astro-ph/0104262.
[85] Andrew S. Ackerman,et al. Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.
[86] F. Allard,et al. The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.
[87] C. McKay,et al. The thermal structure of Titan's atmosphere. , 1989, Icarus.
[88] K. Horne,et al. AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .
[89] R. Pudritz,et al. Connecting planet formation and astrochemistry A main sequence for C/O in hot-exoplanetary atmospheres , 2019 .
[90] J. Blecic,et al. Equilibrium chemistry down to 100 K Impact of silicates and phyllosilicates on the carbon to oxygen ratio , 2018 .
[91] E. R. Polovtseva,et al. The HITRAN2012 molecular spectroscopic database , 2013 .
[92] A. Showman,et al. Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006 .
[93] Bruce Fegley,et al. The Planetary Scientist's Companion , 1998 .
[94] U. Fink,et al. The infrared spectrum of Jupiter. , 1976 .