Robust Hash Functions for Visual Data: An Experimental Comparison

Robust hash functions for visual data need a feature extraction mechanism to rely on. We experimentally compare spatial and transform domain feature extraction techniques and identify the global DCT combined with the cryptographic hash function MD-5 to be suited for visual hashing. This scheme offers robustness against JPEG2000 and JPEG compression and qualitative sensitivity to intentional global and local image alterations.

[1]  Ramarathnam Venkatesan,et al.  A Perceptual Audio Hashing Algorithm: A Tool for Robust Audio Identification and Information Hiding , 2001, Information Hiding.

[2]  Jessica J. Fridrich Visual hash for oblivious watermarking , 2000, Electronic Imaging.

[3]  Ton Kalker,et al.  Visual hashing of digital video: applications and techniques , 2001, Optics + Photonics.

[4]  Bruce Schneier,et al.  Applied cryptography : protocols, algorithms, and source codein C , 1996 .

[5]  Ramarathnam Venkatesan,et al.  Robust image hashing , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[6]  Jiri Fridrich,et al.  Robust hash functions for digital watermarking , 2000, Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540).

[7]  Regunathan Radhakrishnan,et al.  Security of visual hash function , 2003, IS&T/SPIE Electronic Imaging.

[8]  Nazim Fatès,et al.  Public automated web-based evaluation service for watermarking schemes: StirMark benchmark , 2001, IS&T/SPIE Electronic Imaging.

[9]  Ramarathnam Venkatesan,et al.  New Iterative Geometric Methods for Robust Perceptual Image Hashing , 2001, Digital Rights Management Workshop.