Lawrence Berkeley National Laboratory Recent Work Title Learning to classify from impure samples with high-dimensional data Permalink

[1]  Michela Paganini,et al.  CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks , 2017, ArXiv.

[2]  C. Collaboration,et al.  Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV , 2017, Journal of Instrumentation.

[3]  Patrick T. Komiske,et al.  Energy flow polynomials: a complete linear basis for jet substructure , 2017, 1712.07124.

[4]  B. Nachman,et al.  Classification without labels: learning from mixed samples in high energy physics , 2017, 1708.02949.

[5]  B. Nachman,et al.  Pileup Mitigation with Machine Learning (PUMML) , 2017, 1707.08600.

[6]  M. Freytsis,et al.  (Machine) learning to do more with less , 2017, Journal of High Energy Physics.

[7]  Zihao Jiang,et al.  Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment , 2017 .

[8]  Benjamin Nachman,et al.  Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters. , 2017, Physical review letters.

[9]  A. Larkoski,et al.  How much information is in a jet? , 2017, Journal of High Energy Physics.

[10]  D. Kar,et al.  Systematics of quark/gluon tagging , 2017, 1704.03878.

[11]  L. Dery,et al.  Weakly supervised classification in high energy physics , 2017, Journal of High Energy Physics.

[12]  G. Kasieczka,et al.  Deep-learning top taggers or the end of QCD? , 2017, 1701.08784.

[13]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[14]  P. Komiske,et al.  Deep learning in color: towards automated quark/gluon jet discrimination , 2016, 1612.01551.

[15]  E. Dawe,et al.  Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks , 2016, 1609.00607.

[16]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[17]  P. Baldi,et al.  Jet Substructure Classification in High-Energy Physics with Deep Neural Networks , 2016, 1603.09349.

[18]  Atlas Collaboration,et al.  Performance of b-jet identification in the ATLAS experiment , 2015, 1512.01094.

[19]  Luke de Oliveira,et al.  Jet-images — deep learning edition , 2015, Journal of High Energy Physics.

[20]  Leandro Giordano Almeida,et al.  Playing tag with ANN: boosted top identification with pattern recognition , 2015, 1501.05968.

[21]  T. Tuuva,et al.  Identification techniques for highly boosted W bosons that decay into hadrons , 2014 .

[22]  J. Cogan,et al.  Jet-images: computer vision inspired techniques for jet tagging , 2014, 1407.5675.

[23]  G. Bruno,et al.  Identification of b-quark jets with the CMS experiment , 2013 .

[24]  Gilles Blanchard,et al.  Classification with Asymmetric Label Noise: Consistency and Maximal Denoising , 2013, COLT.

[25]  M. Schwartz,et al.  Quark and gluon jet substructure , 2012, Journal of High Energy Physics.

[26]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[27]  M. Schwartz,et al.  Pure samples of quark and gluon jets at the LHC , 2011, 1104.1175.

[28]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[29]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[30]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[31]  Quark versus Gluon Jet Tagging Using Charged-Particle Constituent Multiplicity with the ATLAS Detector The ATLAS , 2017 .

[32]  Heavy flavor identification at CMS with deep neural networks , 2017 .

[33]  Iñaki Inza,et al.  Weak supervision and other non-standard classification problems: A taxonomy , 2016, Pattern Recognit. Lett..