Similarity maps and hierarchical clustering for annotating FT-IR spectral images

BackgroundUnsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization.ResultsWe introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy.ConclusionsWe demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward’s clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

[1]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[2]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[3]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[4]  Taku Komura,et al.  Automatic Panel Extraction of Color Comic Images , 2007, PCM.

[5]  S. R. Kannan,et al.  Effective fuzzy c-means based kernel function in segmenting medical images , 2010, Comput. Biol. Medicine.

[6]  Max Diem,et al.  Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. , 2004, Biochimica et biophysica acta.

[7]  Silke Wagner,et al.  Comparing Clusterings - An Overview , 2007 .

[8]  Benjamin Bird,et al.  Infrared micro-spectral imaging: distinction of tissue types in axillary lymph node histology , 2008, BMC clinical pathology.

[9]  M. Meilă Comparing clusterings---an information based distance , 2007 .

[10]  Peter Serocka Visualization of High-Dimensional Biomedical Image Data , 2007, PCM.

[11]  H. Edwards,et al.  Raman Microscopy: Developments and Applications , 1996 .

[12]  Peter Lasch,et al.  Characterization of Colorectal Adenocarcinoma Sections by Spatially Resolved FT-IR Microspectroscopy , 2002 .

[13]  Mortazavi,et al.  Supporting Online Material Materials and Methods Figs. S1 to S13 Tables S1 to S3 References Label-free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2022 .

[14]  Yves Lechevallier,et al.  Proceedings of COMPSTAT'2010 , 2010 .

[15]  Domenico Vistocco,et al.  Cutting the Dendrogram through Permutation Tests , 2015 .

[16]  Andreas W. M. Dress,et al.  Two Theorems about Similarity Maps , 2008 .

[17]  BMC Bioinformatics , 2005 .

[18]  Mihai Pop,et al.  Finding Biologically Accurate Clusterings in Hierarchical Tree Decompositions Using the Variation of Information , 2009, J. Comput. Biol..

[19]  Axel Mosig,et al.  Ct3d: tracking microglia motility in 3D using a novel cosegmentation approach , 2010, Bioinform..

[20]  Max Diem,et al.  Artificial neural networks as supervised techniques for FT‐IR microspectroscopic imaging , 2006, Journal of chemometrics.

[21]  Hon Wai Leong,et al.  Dynamic Programming Algorithms for Efficiently Computing Cosegmentations between Biological Images , 2011, WABI.

[22]  M. Cugmas,et al.  On comparing partitions , 2015 .

[23]  Julie H. Simpson,et al.  BrainAligner: 3D Registration Atlases of Drosophila Brains , 2011, Nature Methods.

[24]  Francis L Martin,et al.  Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. , 2012, The Analyst.

[25]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[26]  Christoph Krafft,et al.  Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging , 2006, Analytical and bioanalytical chemistry.

[27]  Max Diem,et al.  Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections , 2013, Journal of biophotonics.

[28]  Chaofeng Wang,et al.  Tracking cells in Life Cell Imaging videos using topological alignments , 2009, Algorithms for Molecular Biology.

[29]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[30]  Walter Schubert,et al.  Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS. , 2012, New biotechnology.

[31]  Simon Kasif,et al.  Hierarchical tree snipping: clustering guided by prior knowledge , 2007, Bioinform..

[32]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[33]  M. Diem,et al.  Spectroscopy , 2007, Acta Neuropsychiatrica.