New adaptive artificial viscosity method for hyperbolic systems of conservation laws

We propose a new finite volume method for solving general multidimensional hyperbolic systems of conservation laws. Our method is based on an appropriate numerical flux and a high-order piecewise polynomial reconstruction. The latter is utilized without any computationally expensive nonlinear limiters, which are typically needed to guarantee nonlinear stability of the scheme. Instead, we enforce stability of the proposed method by adding a new adaptive artificial viscosity, whose coefficients are proportional to the size of the weak local residual, which is sufficiently large (~@D, where @D is a discrete small scale) at the shock regions, much smaller (~@D^@a, where @a is close to 2) near the contact waves, and very small (~@D^4) in the smooth parts of the computed solution. We test the proposed scheme on a number of benchmarks for both scalar conservation laws and for one- and two-dimensional Euler equations of gas dynamics. The obtained numerical results clearly demonstrate the robustness and high accuracy of the new method.

[1]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[2]  A. Kurganov,et al.  On the Reduction of Numerical Dissipation in Central-Upwind Schemes , 2006 .

[3]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[4]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[5]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[6]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[7]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[8]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[9]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[10]  Mark L. Wilkins,et al.  Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .

[11]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[12]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[13]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[14]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[15]  C. Schulz-Rinne,et al.  Classification of the Riemann problem for two-dimensional gas dynamics , 1991 .

[16]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[17]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[18]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[19]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[20]  Antonio Marquina,et al.  Power ENO methods: a fifth-order accurate weighted power ENO method , 2004 .

[21]  Alexander Kurganov,et al.  Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..

[22]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[23]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[24]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[25]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[26]  James C. McWilliams,et al.  Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation , 1998 .

[27]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[28]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[29]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[30]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[31]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[32]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[33]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[34]  Eitan Tadmor,et al.  The large-time behavior of the scalar genuinely nonlinear Lax-Friedrichs scheme , 1984 .

[35]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[36]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[37]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[38]  Alexander Kurganov,et al.  A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .

[39]  Bojan Popov,et al.  Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws , 2007, SIAM J. Sci. Comput..

[40]  Alexander Kurganov,et al.  A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems , 2001, Numerische Mathematik.

[41]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[42]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .