Somatic proteome of Haemonchus contortus.

Currently, there is a dearth of proteomic data to underpin fundamental investigations of parasites and parasitism at the molecular level. Here, using a high throughput LC-MS/MS-based approach, we undertook the first reported comprehensive, large-scale proteomic investigation of the barber's pole worm (Haemonchus contortus) - one of the most important parasitic nematodes of livestock animals worldwide. In total, 2487 unique H. contortus proteins representing different developmental stages/sexes (i.e. eggs, L3s and L4s, female (Af) and male (Am) adults) were identified and quantified with high confidence. Bioinformatic analyses of this proteome revealed substantial alterations in protein profiles during the life cycle, particularly in the transition from the free-living to the parasitic phase, and key groups of proteins involved specifically in feeding, digestion, metabolism, development, parasite-host interactions (including immunomodulation), structural remodelling of the body wall and adaptive processes during parasitism. This proteomic data set will facilitate future molecular, biochemical and physiological investigations of H. contortus and related nematodes, and the discovery of novel intervention targets against haemonchosis.

[1]  T. Geary,et al.  Proteomic Analysis of Adult Ascaris suum Fluid Compartments and Secretory Products , 2014, PLoS neglected tropical diseases.

[2]  Martin Hunt,et al.  The Genome and Transcriptome of Haemonchus Contortus, a Key Model Parasite for Drug and Vaccine Discovery Genome Biology the Genome and Transcriptome of Haemonchus Contortus, a Key Model Parasite for Drug and Vaccine Discovery , 2013 .

[3]  A. Harder The Biochemistry of Haemonchus contortus and Other Parasitic Nematodes. , 2016, Advances in parasitology.

[4]  S. Granjeaud,et al.  Inducible Antibacterial Defense System in C. elegans , 2002, Current Biology.

[5]  K. H. Wolfe,et al.  Proteinases and associated genes of parasitic helminths. , 1999, Advances in parasitology.

[6]  K. Monteiro,et al.  Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins. , 2017, Molecular and biochemical parasitology.

[7]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[8]  T. Veenstra,et al.  Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia , 2011, Proceedings of the National Academy of Sciences.

[9]  Ross S Hall,et al.  The barber's pole worm CAP protein superfamily--A basis for fundamental discovery and biotechnology advances. , 2015, Biotechnology advances.

[10]  Shivashankar H. Nagaraj,et al.  Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. , 2008, International journal for parasitology.

[11]  William Stafford Noble,et al.  Semi-supervised learning for peptide identification from shotgun proteomics datasets , 2007, Nature Methods.

[12]  A. Jex,et al.  Next-Generation Molecular-Diagnostic Tools for Gastrointestinal Nematodes of Livestock, with an Emphasis on Small Ruminants , 2013, Advances in Parasitology.

[13]  R. Gasser,et al.  HcSTK, a Caenorhabditis elegans PAR-1 homologue from the parasitic nematode, Haemonchus contortus. , 2002, International journal for parasitology.

[14]  S. Long,et al.  Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae. , 2015, Acta tropica.

[15]  Pasi K. Korhonen,et al.  Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. , 2016, Biotechnology advances.

[16]  R. Maizels,et al.  A novel C-type lectin secreted by a tissue-dwelling parasitic nematode , 1999, Current Biology.

[17]  Rick M. Maizels,et al.  Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity , 2014, Nature Communications.

[18]  R. Maizels,et al.  C-type lectins from the nematode parasites Heligmosomoides polygyrus and Nippostrongylus brasiliensis , 2009, Parasitology international.

[19]  P. Sternberg,et al.  The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families , 2015, Nature Genetics.

[20]  Kimberly Van Auken,et al.  WormBase 2016: expanding to enable helminth genomic research , 2015, Nucleic Acids Res..

[21]  R. Maizels,et al.  The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. , 2008, Molecular and biochemical parasitology.

[22]  A. P. Page,et al.  The cuticle. , 2007, WormBook : the online review of C. elegans biology.

[23]  Pasi K. Korhonen,et al.  Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. , 2018, International journal for parasitology.

[24]  Pasi K. Korhonen,et al.  The complement of family M1 aminopeptidases of Haemonchus contortus--Biotechnological implications. , 2016, Biotechnology advances.

[25]  M. Blaxter,et al.  Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle , 2016, Molecular & Cellular Proteomics.

[26]  S. Gordon,et al.  Divergent roles for C-type lectins expressed by cells of the innate immune system. , 2004, Molecular immunology.

[27]  Erich Bornberg-Bauer,et al.  Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. , 2008, Immunobiology.

[28]  Bill C. H. Chang,et al.  Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  Chuan-Yun Li,et al.  KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases , 2011, Nucleic Acids Res..

[30]  Hiroshi Mori,et al.  FuncTree: Functional Analysis and Visualization for Large-Scale Omics Data , 2015, PloS one.

[31]  P. Moate,et al.  Global survey of the bovine salivary proteome: integrating multidimensional prefractionation, targeted, and glycocapture strategies. , 2011, Journal of proteome research.

[32]  M. Zamanian,et al.  Release of Small RNA-containing Exosome-like Vesicles from the Human Filarial Parasite Brugia malayi , 2015, PLoS neglected tropical diseases.

[33]  A. Loukas,et al.  Digestive proteases of blood-feeding nematodes. , 2003, Trends in parasitology.

[34]  Qi Wang,et al.  Helminth.net: expansions to Nematode.net and an introduction to Trematode.net , 2014, Nucleic Acids Res..

[35]  N. Sargison,et al.  Haemonchus contortus and Haemonchosis – Past, Present and Future Trends , 2016 .

[36]  Mark J. Miller,et al.  Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection , 2015, PLoS pathogens.

[37]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[38]  John R Yates,et al.  Proteomics by mass spectrometry: approaches, advances, and applications. , 2009, Annual review of biomedical engineering.

[39]  Mark L. Blaxter,et al.  NEMBASE: a resource for parasitic nematode ESTs , 2004, Nucleic Acids Res..

[40]  R. Wilson,et al.  Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. , 2015, Biotechnology advances.

[41]  T. McNeilly,et al.  A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta , 2016, Veterinary parasitology.

[42]  F. Veglia The anatomy and life-history of Haemonchus contortus (Rud.) , 1915 .

[43]  Roland Bruderer,et al.  High‐precision iRT prediction in the targeted analysis of data‐independent acquisition and its impact on identification and quantitation , 2016, Proteomics.

[44]  Ruedi Aebersold,et al.  Mass-spectrometric exploration of proteome structure and function , 2016, Nature.

[45]  J. Yates,et al.  Protein analysis by shotgun/bottom-up proteomics. , 2013, Chemical reviews.

[46]  M. Cappello,et al.  Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: evidence for a role in hookworm reproductive physiology. , 2007, Molecular and biochemical parasitology.

[47]  Pasi K. Korhonen,et al.  The developmental lipidome of Haemonchus contortus. , 2018, International journal for parasitology.

[48]  Ben C. Collins,et al.  Quantitative proteomics: challenges and opportunities in basic and applied research , 2017, Nature Protocols.

[49]  Oliver M. Bernhardt,et al.  Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues* , 2015, Molecular & Cellular Proteomics.

[50]  Pasi K. Korhonen,et al.  The Haemonchus contortus kinome - a resource for fundamental molecular investigations and drug discovery , 2015, Parasites & Vectors.

[51]  Jonathan D. C. Stoltzfus,et al.  Perusal of parasitic nematode 'omics in the post-genomic era. , 2017, Molecular and biochemical parasitology.

[52]  Paul W. Sternberg,et al.  Genome of the human hookworm Necator americanus , 2014, Nature Genetics.

[53]  Kaveh Ashrafi,et al.  Obesity and the regulation of fat metabolism. , 2007, WormBook : the online review of C. elegans biology.

[54]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[55]  Yoichiro Horii,et al.  A novel C-type lectin identified by EST analysis in tissue migratory larvae of Ascaris suum , 2011, Parasitology Research.

[56]  R. Maizels,et al.  Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands , 2000, Parasitology.

[57]  T. Veenstra,et al.  A Proteomic Analysis of the Body Wall, Digestive Tract, and Reproductive Tract of Brugia malayi , 2015, PLoS neglected tropical diseases.

[58]  A. Heck,et al.  Comprehensive Analysis of the Secreted Proteins of the Parasite Haemonchus contortus Reveals Extensive Sequence Variation and Differential Immune Recognition* , 2003, The Journal of Biological Chemistry.

[59]  Shivashankar H. Nagaraj,et al.  Proteomics Analysis of the Excretory/Secretory Component of the Blood-feeding Stage of the Hookworm, Ancylostoma caninum*S , 2009, Molecular & Cellular Proteomics.

[60]  Tao Cai,et al.  Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary , 2005, Bioinform..

[61]  Abdul Jabbar,et al.  The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus , 2013, Genome Biology.

[62]  M. O’Bryan,et al.  The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. , 2008, Endocrine reviews.

[63]  M. Dhaenens,et al.  Proteomic Analysis of the Excretory-Secretory Products from Larval Stages of Ascaris suum Reveals High Abundance of Glycosyl Hydrolases , 2013, PLoS neglected tropical diseases.