On Some Mixed Finite Element Methods with Numerical Integration

In this paper a new family of mixed finite volume methods is analyzed for the approximation of a reaction-diffusion problem. All the methods are obtained starting from the dual mixed formulation of the problem and then employing the lowest-order Raviart--Thomas finite element spaces plus a suitable quadrature formula for the mass matrix. This allows for the use of different averages of the inverse diffusion coefficient to enforce the constitutive law for the fluxes at the interelement boundary in a finite volume fashion. The soundness of the methods is supported by an error analysis which shows optimal ${\cal O}(h)$ convergence rate with respect to the standard mixed finite element norm in the case of both smooth and piecewise smooth coefficients. Numerical results on test problems with both smooth and nonsmooth coefficients support the theoretical estimates.

[1]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[2]  J. Baranger,et al.  APPLICATION DE LA THEORIE DES ELEMENTS FINIS MIXTES A L'ETUDE D'UNE CLASSEDE SCHEMAS AUX VOLUMES DIFFERENCES FINIS POUR LES PROBLEMES ELLIPTIQUES , 1994 .

[3]  J. Jerome Analysis of Charge Transport , 1996 .

[4]  Richard E. Ewing,et al.  Discretization schemes on triangular grids , 1998 .

[5]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[6]  Richard E. Ewing,et al.  Superconvergence of Mixed Finite Element Approximations over Quadrilaterals , 1993 .

[7]  Paola Pietra,et al.  New mixed finite element schemes for current continuity equations , 1990 .

[8]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[9]  J. P. Hennart,et al.  On the relationship between nodal schemes and mixed-hybrid finite elements , 1993 .

[10]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[11]  Riccardo Sacco,et al.  Stabilized Mixed Finite Volume Methods for Convection-Diffusion Problems , 1997 .

[12]  Stefano Micheletti,et al.  A Discretization Scheme for an Extended Drift-Diffusion Model Including Trap-Assisted Phenomena , 2000 .

[13]  Bernardo Cockburn,et al.  Error estimates for a finite element method for the drift-diffusion semiconductor device equations , 1994 .

[14]  Jim E. Jones,et al.  Control‐volume mixed finite element methods , 1996 .

[15]  Alfio Quarteroni,et al.  Finite element approximation of Quasi-3D shallow water equations , 1999 .

[16]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[17]  J. Molenaar Adaptive multigrid applied to a bipolar transistor problem , 1995 .

[18]  Stefano Micheletti,et al.  Stabilized mixed finite elements for fluid models in semiconductors , 1999 .

[19]  J. Maître,et al.  Connection between finite volume and mixed finite element methods , 1996 .

[20]  Joseph W. Jerome Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices , 1995 .

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[22]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[23]  J. P. Hennart,et al.  Mesh-centered finite differences from nodal finite elements for ellitic problems , 1998 .

[24]  Paola Pietra,et al.  Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .

[25]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[26]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[27]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[28]  R. R. P. Van Nooyen,et al.  A Petrov-Galerkin mixed finite element method with exponential fitting , 1995 .

[29]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[30]  Zhangxin Chen,et al.  On the implementation of mixed methods as nonconforming methods for second-order elliptic problems , 1995 .

[31]  Bernardo Cockburn,et al.  Analysis of a finite element method for the drift-diffusion semiconductor device equations: the multidimensional case , 1995 .

[32]  Riccardo Sacco,et al.  The patch test as a validation of a new finite element for the solution of convection-diffusion equations , 1995 .

[33]  R. K. Smith,et al.  Some upwinding techniques for finite element approximations of convection-diffusion equations , 1990 .

[34]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[35]  Riccardo Sacco,et al.  Mixed finite volume methods for semiconductor device simulation , 1997 .

[36]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[37]  S. J. Polak Mixed FEM for Δu = αu , 1990 .

[38]  Panayot S. Vassilevski,et al.  Finite Difference Schemes on Triangular Cell-Centered Grids with Local Refinement , 1992, SIAM J. Sci. Comput..