Towards water based ultra-thick Li ion battery electrodes – A binder approach

[1]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[2]  B. Polzin,et al.  Suppressed oxygen extraction and degradation of LiNixMnyCozO2 cathodes at high charge cut-off voltages , 2017, Nano Research.

[3]  M. Winter,et al.  Learning from Electrochemical Data: Simple Evaluation and Classification of LiMO2‐type‐based Positive Electrodes for Li‐Ion Batteries , 2017 .

[4]  M. Winter,et al.  Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions , 2017 .

[5]  Partha P. Mukherjee,et al.  Enabling aqueous processing for crack-free thick electrodes , 2017 .

[6]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[7]  James A. Gilbert,et al.  Chemical Weathering of Layered Ni-Rich Oxide Electrode Materials: Evidence for Cation Exchange , 2017 .

[8]  H. Hahn,et al.  A systematic study of thick electrodes for high energy lithium ion batteries , 2016 .

[9]  H. Hahn,et al.  Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications , 2016 .

[10]  M. Winter,et al.  Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency , 2016 .

[11]  M. Winter,et al.  Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes , 2016 .

[12]  H. Hahn,et al.  The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. , 2016, Physical chemistry chemical physics : PCCP.

[13]  Changxin Chen,et al.  Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries , 2016, Scientific Reports.

[14]  Wolfgang Haselrieder,et al.  Measuring the coating adhesion strength of electrodes for lithium-ion batteries , 2015 .

[15]  S. Joo,et al.  Ultra-thick Li-ion battery electrodes using different cell size of metal foam current collectors , 2015 .

[16]  Horst Hahn,et al.  Thick Electrodes for High Energy Lithium Ion Batteries , 2015 .

[17]  W. Bauer,et al.  Processing of water-based LiNi1/3Mn1/3Co1/3O2 pastes for manufacturing lithium ion battery cathodes , 2014, Bulletin of Materials Science.

[18]  B. Bitsch,et al.  A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties , 2014 .

[19]  S. Bodoardo,et al.  Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector , 2014 .

[20]  Stefano Passerini,et al.  Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder , 2014 .

[21]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[22]  M. Winter,et al.  Ionic mobility in ternary polymer electrolytes for lithium-ion batteries , 2012 .

[23]  M. Winter,et al.  Natural cellulose as binder for lithium battery electrodes , 2012 .

[24]  S. Passerini,et al.  Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries , 2011 .

[25]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[26]  M. Winter,et al.  Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries , 2010 .

[27]  M. Winter,et al.  Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid , 2008 .

[28]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[29]  M. Whittingham,et al.  Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 , 2007 .

[30]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[31]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[32]  Young-Min Choi,et al.  Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries , 2006 .

[33]  M. Wagner,et al.  The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes , 2001 .

[34]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[35]  Martin Winter,et al.  Lithium storage alloys as anode materials in lithium ion batteries , 1998 .

[36]  S. Prabaharan,et al.  Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers , 1997 .