Concerning the stability of dichlorodiazene

[1]  Michael C. Heaven,et al.  An ab initio excursion on the lowest 18 electronic surfaces of the NCl + NCl system: Some insight into the long-range self-quenching pathways of the first excited state of NCl , 2002 .

[2]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[3]  Gordon D. Hager,et al.  A New Energy Transfer Chemical Laser at 1.315 Microns , 2000 .

[4]  Gerald C. Manke,et al.  Quenching Rate Constants of NCl(a1Δ) at Room Temperature , 2000 .

[5]  E. Anders,et al.  MO Theoretical Investigation of the Cis Effect Observed in Mono- and Dihalodiazenes , 1999 .

[6]  Gordon D. Hager,et al.  The measurement of gain on the 1.315 μm transition of atomic iodine in a subsonic flow of chemically generated NCl(a1Δ) , 1999 .

[7]  Gerald C. Manke,et al.  Kinetics of NCl(a 1 Δ and b 1 Σ + ) Generation: The Cl + N 3 Rate Constant, the NCl(a 1 Δ) Product Branching Fraction, and Quenching of NCl(a 1 Δ) by F and Cl Atoms , 1998 .

[8]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[9]  R. D. Coombe,et al.  An I* laser pumped by NCl(a1.DELTA.) , 1995 .

[10]  R. D. Coombe,et al.  Energy transfer from chloroimidogen (a1.DELTA.) to iodine atoms , 1993 .

[11]  L. Rubin,et al.  Population inversion between I((2)P(1/2)) and I((2)P(3/2)) of atomic iodine generated by the energy transfer from NCl(a(1)Delta) to I((2)P(3/2)). , 1992, Optics letters.

[12]  R. Bower,et al.  I( 2 P 1/2 ) produced by the energy transfer from NCl(a 1 Δ) to I( 2 P 3/2 ) , 1991 .

[13]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[14]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[15]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[16]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[17]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[18]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[19]  H. Schaefer,et al.  Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions , 1982 .

[20]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[21]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[22]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[23]  S. Bauer,et al.  An electron diffraction study of the structures of cis- and transN2F2 , 1967 .

[24]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[25]  R. L. Kuczkowski,et al.  Microwave Spectrum, Structure, and Dipole Moment of ``Cis''‐N2F2 , 1963 .

[26]  Gerald C. Manke,et al.  Measuring Gas-Phase Chlorine Atom Concentrations: Rate Constants for Cl + HN3, CF3I, and C2F5I , 1998 .

[27]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .