Canonical Characters on Quasi-Symmetric Functions and Bivariate Catalan Numbers
暂无分享,去创建一个
[1] E. Catalan. Sur quelques questions relatives aux fonctions elliptiques , 2022 .
[2] Frank Sottile,et al. Structure of The Malvenuto-Reutenauer Hopf Algebra of Permutations (Extended Abstract) , 2002, math/0203282.
[3] Ira M. Gessel,et al. Super Ballot Numbers , 1992, J. Symb. Comput..
[4] Abdus Salam,et al. Random Walks and Catalan Factorization , 2007 .
[5] Michael E. Hoffman,et al. Quasi-Shuffle Products , 1999 .
[6] J. Thibon,et al. Quantum quasi-symmetric functions and Hecke algebras , 1996 .
[7] J. Stembridge. Enriched p-partitions , 1997 .
[8] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[9] Universitde Marne-la-Vall. Quantum quasi-symmetric functions and Hecke algebras , 1996 .
[10] Kathryn L. Nyman,et al. The peak algebra and the descent algebras of types B and D , 2003, math/0302278.
[11] K. Penson,et al. Integral Representations of Catalan and Related Numbers , 2001 .
[12] R. Stanley. Ordered Structures And Partitions , 1972 .
[13] R. Ehrenborg. On Posets and Hopf Algebras , 1996 .
[14] Frank Sottile,et al. Combinatorial Hopf algebras and generalized Dehn–Sommerville relations , 2003, Compositio Mathematica.