Study of the thermal aspects in brushless permanent magnet machines performance

This paper addresses the analysis of the main thermal phenomena in brushless permanent magnet machines, such as demagnetization of the magnets due to the heat created by losses. Several methods are investigated to mitigate complex loss components; i.e., magnet losses and AC copper losses. The efficiency of the cooling system, with natural or forced convection, is also presented.

[1]  M. Pastorelli,et al.  Thermal analysis of induction and synchronous reluctance motors , 2005, IEEE International Conference on Electric Machines and Drives, 2005..

[2]  Jn McNeill,et al.  Torque dense, external rotor hub-drive for a hybrid solar vehicle , 2006 .

[3]  Yung-Kang Robert Chin,et al.  Thermal analysis - Lumped-circuit model and finite element analysis , 2003 .

[4]  Graeme W. Milton,et al.  Bounds on the transport and optical properties of a two‐component composite material , 1981 .

[5]  K. Mahkamov,et al.  2-D lumped-parameter thermal modelling of axial flux permanent magnet generators , 2008, 2008 18th International Conference on Electrical Machines.

[6]  Andrea Cavagnino,et al.  Predicting iron losses in soft magnetic materials with arbitrary voltage supply: an engineering approach , 2003 .

[7]  N. Bianchi,et al.  Thermal analysis of duplex 3-phase induction motor under fault operating conditions , 2012, 2012 XXth International Conference on Electrical Machines.

[8]  David G. Dorrell,et al.  A combined electromagnetic and thermal approach to the design of electrical machines , 2006 .

[9]  Y.K. Chin,et al.  Transient thermal analysis using both lumped-circuit approach and finite element method of a permanent magnet traction motor , 2004, 2004 IEEE Africon. 7th Africon Conference in Africa (IEEE Cat. No.04CH37590).

[10]  G. Bertotti General properties of power losses in soft ferromagnetic materials , 1988 .

[11]  G. Bertotti,et al.  hysteresis in magnetism (electromagnetism) , 1998 .

[12]  Andrea Cavagnino,et al.  Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors , 2005 .

[13]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[14]  Charles R. Sullivan Optimal choice for number of strands in a litz-wire transformer winding , 1997 .

[15]  V. Colli,et al.  Thermal Analysis of an Axial Flux Permanent-Magnet Synchronous Machine , 2009, IEEE Transactions on Magnetics.

[16]  Rafal Wrobel,et al.  Design considerations of a brushless open-slot radial-flux PM hub motor , 2012, 2012 IEEE Energy Conversion Congress and Exposition (ECCE).

[17]  T.J.E. Miller,et al.  On the variation with flux and frequency of the core loss coefficients in electrical machines , 2006, IEEE Transactions on Industry Applications.

[18]  David G. Dorrell,et al.  Linked electromagnetic and thermal modelling of a permanent magnet motor , 1988 .

[19]  D.G. Dorrell,et al.  Design of Brushless Permanent Magnet Motors - A Combined Electromagnetic and Thermal Approach to High Performance Specification , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[20]  D.M. Ionel,et al.  Computation of Core Losses in Electrical Machines Using Improved Models for Laminated Steel , 2006, IEEE Transactions on Industry Applications.

[21]  S. Ruoho,et al.  Temperature Dependence of Resistivity of Sintered Rare-Earth Permanent-Magnet Materials , 2010, IEEE Transactions on Magnetics.

[22]  Salvatore Torquato,et al.  Bounds on the conductivity of a random array of cylinders , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Timothy J. E. Miller,et al.  Design of Brushless Permanent-Magnet Motors , 1994 .