Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli

This article presents a study of aerosol optical and microphysical properties under different relative humidity (RH) but well mixed layer conditions using optical and microphysical aerosol properties from multi-wavelength (MW) Raman lidar and in-situ aerosol observations collected at the Cabauw Experimental Site for Atmospheric Research (CESAR). Two hygroscopic events are described through 3 backscatter (β) and 2 extinction (α) coefficients which in turn provide intensive parameters such as the backscatter-related Angstrom exponent (a β ) and the lidar ratio (LR). Along with it, profiles of RH were inferred from Raman lidar observations and therefore, as a result of varying humidity conditions, a shift on the aerosol optical properties can be described. Thus, it is observed that as RH increases, aerosols uptake water vapour, augment their size and consequently the a β diminishes whereas the LR increases. The enhancement factor based on the backscatter coefficient at 532 nm, which characterizes the aerosol from hygroscopic standpoint, is also estimated. Finally, microphysical properties that are necessary for aerosol radiative forcing estimates - such as volume, effective radii, refractive index and size distribution, all vertically resolved - are retrieved using the inversion with regularization. Using this method, two hygroscopic events are described in detail. © 2015 Elsevier Ltd.

[1]  G. Leeuw,et al.  Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign , 2010 .

[2]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[3]  I. Tang,et al.  Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols , 1993 .

[4]  U. Wandinger,et al.  Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.

[5]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[6]  D. Müller,et al.  Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. , 2004, Applied optics.

[7]  A. Apituley,et al.  Performance Assessment and Application of Caeli — A high-performance Raman lidar for diurnal profiling of Water Vapour, Aerosols and Clouds , 2009 .

[8]  David N. Whiteman,et al.  Observation of atmospheric fronts using Raman lidar moisture measurements , 1989 .

[9]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[10]  Ernest Weingartner,et al.  Effects of relative humidity on aerosol light scattering: results from different European sites , 2012 .

[11]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[12]  A. Stohl,et al.  Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .

[13]  J. Bösenberg,et al.  EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .

[14]  M. Wendisch,et al.  Optical and microphysical characterization of biomass‐ burning and industrial‐pollution aerosols from‐ multiwavelength lidar and aircraft measurements , 2002 .

[15]  Simple relationships for the Ångström parameter of disperse systems. , 1995, Applied optics.

[16]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[17]  M. Esselborn,et al.  Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe , 2010 .

[18]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[19]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[20]  Michael D. Obland,et al.  Aerosol and cloud interaction observed from high spectral resolution lidar data , 2008 .

[21]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[22]  David N. Whiteman,et al.  Demonstration of Aerosol Property Profiling by Multiwavelength Lidar Under Varying Relative Humidity Conditions , 2009 .

[23]  Albert Ansmann,et al.  Relative-humidity profiling in the troposphere with a Raman lidar. , 2002, Applied optics.

[24]  Lucas Alados-Arboledas,et al.  Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain , 2014 .

[25]  Bruce Morley,et al.  Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements , 2003 .

[26]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[27]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[28]  Gottfried Hänel,et al.  The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air , 1976 .

[29]  Peter V. Hobbs,et al.  Humidification factors for atmospheric aerosols off the mid‐Atlantic coast of the United States , 1999 .

[30]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[31]  S. H. Melfi,et al.  Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons , 1998 .

[32]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[33]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[34]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[35]  M. Pujadas,et al.  Aerosol optical and microphysical properties observed by the lidar technique from a forest-fire smoke event over Madrid , 2014 .

[36]  Philippe Keckhut,et al.  A Raman lidar at La Reunion (20.8° S, 55.5° E) for monitoring water vapor and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system , 2011 .

[37]  L. Alados-Arboledas,et al.  Study of the relative humidity dependence of aerosol light-scattering in southern Spain , 2014 .

[38]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[39]  Yi-Wei Chen,et al.  Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan , 2007 .

[40]  Albert Ansmann,et al.  Vertical profiling of the Indian aerosol plume with six‐wavelength lidar during INDOEX: A first case study , 2000 .

[41]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[42]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.