Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli
暂无分享,去创建一个
Arnoud Apituley | Manuel Pujadas | J. S. Henzing | Begoña Artíñano | M. Pujadas | A. Apituley | I. Veselovskii | B. Artíñano | A. J. Fernández | A. Suvorina | I. Veselovskii | A. Suvorina | A. Fernandez
[1] G. Leeuw,et al. Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign , 2010 .
[2] Michael D. King,et al. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .
[3] I. Tang,et al. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols , 1993 .
[4] U. Wandinger,et al. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.
[5] R. Betts,et al. Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .
[6] D. Müller,et al. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. , 2004, Applied optics.
[7] A. Apituley,et al. Performance Assessment and Application of Caeli — A high-performance Raman lidar for diurnal profiling of Water Vapour, Aerosols and Clouds , 2009 .
[8] David N. Whiteman,et al. Observation of atmospheric fronts using Raman lidar moisture measurements , 1989 .
[9] A. Ansmann,et al. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.
[10] Ernest Weingartner,et al. Effects of relative humidity on aerosol light scattering: results from different European sites , 2012 .
[11] Jean-François Léon,et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .
[12] A. Stohl,et al. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .
[13] J. Bösenberg,et al. EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .
[14] M. Wendisch,et al. Optical and microphysical characterization of biomass‐ burning and industrial‐pollution aerosols from‐ multiwavelength lidar and aircraft measurements , 2002 .
[15] Simple relationships for the Ångström parameter of disperse systems. , 1995, Applied optics.
[16] Lukas H. Meyer,et al. Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.
[17] M. Esselborn,et al. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe , 2010 .
[18] Corinne Le Quéré,et al. Climate Change 2013: The Physical Science Basis , 2013 .
[19] S. Twomey. The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .
[20] Michael D. Obland,et al. Aerosol and cloud interaction observed from high spectral resolution lidar data , 2008 .
[21] A. Ångström. The parameters of atmospheric turbidity , 1964 .
[22] David N. Whiteman,et al. Demonstration of Aerosol Property Profiling by Multiwavelength Lidar Under Varying Relative Humidity Conditions , 2009 .
[23] Albert Ansmann,et al. Relative-humidity profiling in the troposphere with a Raman lidar. , 2002, Applied optics.
[24] Lucas Alados-Arboledas,et al. Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain , 2014 .
[25] Bruce Morley,et al. Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements , 2003 .
[26] K. Trenberth,et al. Earth's annual global mean energy budget , 1997 .
[27] A. Smirnov,et al. AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .
[28] Gottfried Hänel,et al. The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air , 1976 .
[29] Peter V. Hobbs,et al. Humidification factors for atmospheric aerosols off the mid‐Atlantic coast of the United States , 1999 .
[30] T. Eck,et al. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .
[31] S. H. Melfi,et al. Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons , 1998 .
[32] S. H. Melfi,et al. Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.
[33] Oleg Dubovik,et al. Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .
[34] A. Ansmann,et al. Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .
[35] M. Pujadas,et al. Aerosol optical and microphysical properties observed by the lidar technique from a forest-fire smoke event over Madrid , 2014 .
[36] Philippe Keckhut,et al. A Raman lidar at La Reunion (20.8° S, 55.5° E) for monitoring water vapor and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system , 2011 .
[37] L. Alados-Arboledas,et al. Study of the relative humidity dependence of aerosol light-scattering in southern Spain , 2014 .
[38] A. Ansmann,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.
[39] Yi-Wei Chen,et al. Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan , 2007 .
[40] Albert Ansmann,et al. Vertical profiling of the Indian aerosol plume with six‐wavelength lidar during INDOEX: A first case study , 2000 .
[41] A. Ansmann,et al. Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .
[42] B. Albrecht. Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.