Two regularization methods for backward heat problems with new error estimates

Abstract We introduce two new methods for solving a backward heat conduction problem. For these two methods, we give a stability analysis with new error estimates. Meanwhile, we investigate the roles of the regularization parameters in these two methods. Numerical results show that our algorithm is effective.

[1]  Huy Tuan Nguyen,et al.  REGULARIZATION AND ERROR ESTIMATES FOR NONHOMOGENEOUS BACKWARD HEAT PROBLEMS , 2006 .

[2]  Nguyen Manh Hung,et al.  Unique solvability of initial boundary-value problems for hyperbolic systems in cylinders whose base is a cusp domain , 2008 .

[3]  M. Denche,et al.  A modified quasi-boundary value method for ill-posed problems , 2005 .

[4]  Dang Duc Trong,et al.  A new regularized method for two dimensional nonhomogeneous backward heat problem , 2009, Appl. Math. Comput..

[5]  Xiang-Tuan Xiong,et al.  Fourier regularization for a backward heat equation , 2007 .

[6]  Alfred S. Carasso,et al.  Logarithmic convexity and the “slow evolution” constraint in ill-posed initial value problems , 1999 .

[7]  D. D. Trong,et al.  STABILIZED QUASI-REVERSIBILITY METHOD FOR A CLASS OF NONLINEAR ILL-POSED PROBLEMS , 2008 .

[8]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[9]  Da-Bin Wang,et al.  Three positive solutions for -Laplacian functional dynamic equations on time scales. , 2007 .

[10]  Robert Lattès,et al.  Méthode de quasi-réversibilbilité et applications , 1967 .

[11]  Karen A. Ames,et al.  Continuous dependence on modeling for some well-posed perturbations of the backward heat equation , 1999 .

[12]  Hua Su,et al.  POSITIVE SOLUTIONS OF FOUR-POINT BOUNDARY-VALUE PROBLEMS FOR FOUR-ORDER p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES , 2006 .

[13]  Pham Hoang Quan,et al.  A Nonlinear Case of the 1-D Backward Heat Problem: Regularization and Error Estimate , 2007 .

[14]  Ulrich Tautenhahn,et al.  On Optimal Regularization Methods for the Backward Heat Equation , 1996 .

[15]  Andrei D. Polyanin,et al.  Partial differential equation , 2008, Scholarpedia.

[16]  D. D. Trong,et al.  Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation , 2009 .

[17]  Richard E. Ewing,et al.  The Approximation of Certain Parabolic Equations Backward in Time by Sobolev Equations , 1975 .

[18]  Chu-Li Fu,et al.  Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region , 2008, Math. Comput. Simul..

[19]  D. D. Trong,et al.  A nonlinearly backward heat problem: uniqueness, regularization and error estimate , 2006 .

[20]  D. D. Trong,et al.  A NONHOMOGENEOUS BACKWARD HEAT PROBLEM: REGULARIZATION AND ERROR ESTIMATES , 2008 .

[21]  Ralph E. Showalter,et al.  The final value problem for evolution equations , 1974 .

[22]  Rui Shi,et al.  A modified method for a backward heat conduction problem , 2007, Appl. Math. Comput..

[23]  D. Hào,et al.  A mollification method for ill-posed problems , 1994 .

[24]  Stephen Martin Kirkup,et al.  Solution of inverse diffusion problems by operator-splitting methods , 2002 .

[25]  Seth F. Oppenheimer,et al.  Quasireversibility Methods for Non-Well-Posed Problems , 1994 .

[26]  H. Gajewski,et al.  Zur regularisierung einer Klasse nichtkorrekter probleme bei evolutionsgleichungen , 1972 .