Effect of Inspiratory and Expiratory Breathhold on Pulmonary Perfusion: Assessment by Pulmonary Perfusion Magnetic Resonance Imaging

Rationale and Objectives:The effect of breathholding on pulmonary perfusion remains largely unknown. The aim of this study was to assess the effect of inspiratory and expiratory breathhold on pulmonary perfusion using quantitative pulmonary perfusion magnetic resonance imaging (MRI). Methods and Results:Nine healthy volunteers (median age, 28 years; range, 20–45 years) were examined with contrast-enhanced time-resolved 3-dimensional pulmonary perfusion MRI (FLASH 3D, TR/TE: 1.9/0.8 ms; flip angle: 40°; GRAPPA) during end-inspiratory and expiratory breathholds. The perfusion parameters pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit time (MTT) were calculated using the indicator dilution theory. As a reference method, end-inspiratory and expiratory phase-contrast (PC) MRI of the pulmonary arterial blood flow (PABF) was performed. Results:There was a statistically significant increase of the PBF (Δ = 182 mL/100mL/min), PBV (Δ = 12 mL/100 mL), and PABF (Δ = 0.5 L/min) between inspiratory and expiratory breathhold measurements (P <0.0001). Also, the MTT was significantly shorter (Δ = −0.5 sec) at expiratory breathhold (P = 0.03). Inspiratory PBF and PBV showed a moderate correlation (r = 0.72 and 0.61, P ≤0.008) with inspiratory PABF. Conclusion:Pulmonary perfusion during breathhold depends on the inspiratory level. Higher perfusion is observed at expiratory breathhold.

[1]  R. Michel,et al.  Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. , 1982, Journal of applied physiology: respiratory, environmental and exercise physiology.

[2]  R R Edelman,et al.  Quantitative assessment of pulmonary perfusion with dynamic contrast‐enhanced MRI , 1999, Magnetic resonance in medicine.

[3]  N. Honda,et al.  Quantification of regional pulmonary flow with99mTc-MAA SPECT and cine phase contrast MR imaging , 2002, Annals of nuclear medicine.

[4]  T. Iwasawa,et al.  Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung , 2002, Journal of magnetic resonance imaging : JMRI.

[5]  M. Wartski,et al.  Incomplete recovery of lung perfusion after 3 months in patients with acute pulmonary embolism treated with antithrombotic agents. THESEE Study Group. Tinzaparin ou Heparin Standard: Evaluation dans l'Embolie Pulmonaire Study. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  A. Bankier,et al.  Effect of lung inflation on arterial spin labeling signal in MR perfusion imaging of human lung , 2001, Journal of magnetic resonance imaging : JMRI.

[7]  T. Nakazawa,et al.  Effect of absorbed water on an indium oxide insulator (BeO⋅SiO2)‐p‐silicon solar cell , 1982 .

[8]  Michael Bock,et al.  Partially Parallel Three‐Dimensional Magnetic Resonance Imaging for the Assessment of Lung Perfusion – Initial Results , 2003, Investigative radiology.

[9]  S. Permutt,et al.  Effect of lung inflation on lung blood volume and pulmonary venous flow. , 1985, Journal of applied physiology.

[10]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results , 1996, Magnetic resonance in medicine.

[11]  F Fazio,et al.  Clinical ventilation-perfusion scintigraphy. , 1981, Clinical physiology.

[12]  H. Shima,et al.  Effect of the rate of gadolinium injection on magnetic resonance pulmonary perfusion imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[13]  K. Takeda,et al.  Pulmonary ventilation‐perfusion MR imaging in clinical patients , 2001, Journal of magnetic resonance imaging : JMRI.

[14]  Konstantin Nikolaou,et al.  Quantification of Pulmonary Blood Flow and Volume in Healthy Volunteers by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Parallel Imaging Technique , 2004, Investigative radiology.

[15]  R. Collins,et al.  Optical properties of dense thin-film Si and Ge prepared by ion-beam sputtering , 1985 .

[16]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[17]  T. Hara,et al.  Using H2(15)O and C15O in noninvasive pulmonary measurements. , 1994, Chest.

[18]  B. Carroll,et al.  Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. , 1997, AJR. American journal of roentgenology.

[19]  D. Schuster,et al.  Regional pulmonary perfusion in patients with acute pulmonary edema. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  C. Fink,et al.  [Contrast-enhanced 3D MR perfusion of the lung: application of parallel imaging technique in healthy subjects]. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[21]  John F. Nunn,et al.  Respiratory Physiology—the essentials , 1975 .

[22]  R. Hetzer,et al.  Arterial switch procedure for D-transposition of the great arteries: quantitative midterm evaluation of hemodynamic changes with cine MR imaging and phase-shift velocity mapping-initial experience. , 2000, Radiology.

[23]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.

[24]  M. Welch,et al.  Measurement of regional pulmonary blood flow with PET. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  H. Shima,et al.  Detectability of pulmonary perfusion defect and influence of breath holding on contrast‐enhanced thick‐slice 2D and on 3D MR pulmonary perfusion images , 2001, Journal of magnetic resonance imaging : JMRI.

[26]  R R Edelman,et al.  Pulmonary perfusion: Qualitative assessment with dynamic contrast‐enhanced MRI using ultra‐short TE and inversion recovery turbo FLASH , 1996, Magnetic resonance in medicine.

[27]  S Grampp,et al.  Pulmonary and aortic blood flow measurements in normal subjects and patients after single lung transplantation at 0.5 T using velocity encoded cine MRI. , 1998, Chest.

[28]  C. Fink,et al.  Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[29]  C. Fink,et al.  Kontrastmittelverstärkte 3D-MR-Perfusion der Lunge: Einsatz paralleler Bildgebungstechniken bei gesunden Probanden , 2004 .

[30]  Philipp Beerbaum,et al.  Noninvasive Quantification of Left-to-Right Shunt in Pediatric Patients: Phase-Contrast Cine Magnetic Resonance Imaging Compared With Invasive Oximetry , 2001, Circulation.

[31]  R R Edelman,et al.  Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[32]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[33]  D. Briggs,et al.  Handbook of Physiology, Section 2, Circulation , 1964 .

[34]  M. Schwaiger,et al.  More Accurate Quantification of Pulmonary Blood Flow by Magnetic Resonance Imaging Than by Lung Perfusion Scintigraphy in Patients With Fontan Circulation , 2002, Circulation.

[35]  K. Fukuchi,et al.  Quantitative analysis of lung perfusion in patients with primary pulmonary hypertension. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  R. Herfkens,et al.  Quantitative differential pulmonary perfusion: MR imaging versus radionuclide lung scanning. , 1993, Radiology.

[37]  C. Higgins,et al.  Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. , 1991, Radiology.