Petrogenesis of the Yunling Sn-rich magma in the Baoshan Block, SW China: Constraints from mineral and whole-rock geochemistry

[1]  Zhenchao Wang,et al.  Three types of Triassic granitoids in Changning‐Menglian suture zone: Petrological, geochemical, and geochronological constraints for source characteristics and petrogenesis , 2022, Geological Journal.

[2]  Gongjian Li,et al.  Petrology and biotite geochemistry of Mengku granitoids in the Changning-Menglian suture zone, southwest China: Insights into magma evolution and Sn mineralization , 2022, Ore Geology Reviews.

[3]  Shunda Yuan,et al.  Decoupling of Sn and W mineralization in a highly fractionated reduced granitic magma province: a case study from the Youjiang basin and Jiangnan tungsten belt , 2022, Mineralium Deposita.

[4]  Jun Deng,et al.  Petrology and geochemistry of retrograde eclogites in the Changning-Menglian suture zone, southwest China: Insights into the Palaeo-Tethyan subduction and rutile mineralization , 2021, Ore Geology Reviews.

[5]  A. Williams-Jones,et al.  The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces , 2021, Geology.

[6]  Qingfei Wang,et al.  Discovery of multi-crustal rejuvenations for the formation of the Lincang granitic batholith, Southwest China: magmatism relating to Changning–Menglian Paleo–Tethyan termination , 2021, International Geology Review.

[7]  Guang Wu,et al.  Source rocks control the geochemical diversity of granite: The Lincang pluton in the western Yunnan Tethyan belt, SW China , 2021 .

[8]  M. Fiorentini,et al.  New Magmatic Oxybarometer Using Trace Elements in Zircon , 2020 .

[9]  B. Lehmann Formation of tin ore deposits: A reassessment , 2020 .

[10]  Fulai Liu,et al.  A New HP–UHP Eclogite Belt Identified in the Southeastern Tibetan Plateau: Tracing the Extension of the Main Palaeo-Tethys Suture Zone , 2020 .

[11]  Fu-Yuan Wu,et al.  Origin of the Triassic Lincang granites in the southeastern Tibetan Plateau: Crystallization from crystal mush , 2020, Lithos.

[12]  I. Campbell,et al.  S-type granites: Their origin and distribution through time as determined from detrital zircons , 2020 .

[13]  D. Lentz,et al.  Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range, NE China , 2020, American Mineralogist.

[14]  R. Romer,et al.  Partitioning of Sn and W between granitic melt and aqueous fluid , 2020 .

[15]  P. Hollings,et al.  Multi-stage arc magma evolution recorded by apatite in volcanic rocks , 2020, Geology.

[16]  R. Romer,et al.  Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China , 2019, Economic Geology.

[17]  C. Spencer,et al.  Strongly Peraluminous Granites across the Archean–Proterozoic Transition , 2019, Journal of Petrology.

[18]  F. Finger,et al.  Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions , 2019, Contributions to Mineralogy and Petrology.

[19]  Z. Chang,et al.  Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China , 2019, Mineralium Deposita.

[20]  M. Palmer,et al.  In-situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt , 2019, Ore Geology Reviews.

[21]  Wei Yang,et al.  Insight into zircon REE oxy-barometers: A lattice strain model perspective , 2019, Earth and Planetary Science Letters.

[22]  Fulai Liu,et al.  Petrology, geochemistry and P–T–t path of lawsonite‐bearing retrograded eclogites in the Changning–Menglian orogenic belt, southeast Tibetan Plateau , 2018, Journal of Metamorphic Geology.

[23]  D. Lentz,et al.  Apatite Chemical Compositions from Acadian-Related Granitoids of New Brunswick, Canada: Implications for Petrogenesis and Metallogenesis , 2018, Minerals.

[24]  J. Eiler,et al.  A Comparison of Oxygen Fugacities of Strongly Peraluminous Granites across the Archean–Proterozoic Boundary , 2018, Journal of Petrology.

[25]  R. Hu,et al.  Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China , 2018, American Mineralogist.

[26]  R. Seltmann,et al.  Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite) , 2018, Mineralium Deposita.

[27]  R. Romer,et al.  Tin in granitic melts: The role of melting temperature and protolith composition , 2018, Lithos.

[28]  Rongqing Zhang,et al.  THE XILING Sn DEPOSIT, EASTERN GUANGDONG PROVINCE, SOUTHEAST CHINA: A NEW GENETIC MODEL FROM 40Ar/39Ar MUSCOVITE AND U-Pb CASSITERITE AND ZIRCON GEOCHRONOLOGY , 2018 .

[29]  Rui Xia,et al.  Constraining subduction-collision processes of the Paleo-Tethys along the Changning–Menglian Suture: New zircon U-Pb ages and Sr–Nd–Pb–Hf–O isotopes of the Lincang Batholith , 2017, Gondwana Research.

[30]  Qingfei Wang,et al.  Tectonic evolution, superimposed orogeny, and composite metallogenic system in China , 2017 .

[31]  Peter A. Cawood,et al.  Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments , 2017, Earth-Science Reviews.

[32]  Peter A. Cawood,et al.  Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan , 2017, International Journal of Earth Sciences.

[33]  R. Parrish,et al.  The identification and significance of pure sediment-derived granites , 2017 .

[34]  A. Berry,et al.  Formation of Hadean granites by melting of igneous crust , 2017 .

[35]  Shou‐ting Zhang,et al.  Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China , 2017 .

[36]  J. Richards,et al.  Contrasting Tectonic Settings and Sulfur Contents of Magmas Associated with Cretaceous Porphyry Cu ± Mo ± Au and Intrusion-Related Iron Oxide Cu-Au Deposits in Northern Chile , 2017 .

[37]  N. Cook,et al.  Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities , 2016 .

[38]  L. Tang,et al.  Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China , 2016 .

[39]  R. Hu,et al.  Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China , 2016 .

[40]  G. Dong,et al.  Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation , 2016 .

[41]  B. John,et al.  “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon , 2015, Contributions to Mineralogy and Petrology.

[42]  P. Shen,et al.  Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt , 2015 .

[43]  W. Fan,et al.  Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China , 2015 .

[44]  J. Richards The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny , 2015 .

[45]  Yongjun Lu,et al.  Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet , 2015 .

[46]  R. Hu,et al.  LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang – Red River alkaline igneous belt, SW China , 2015, Mineralogy and Petrology.

[47]  Jiangfeng Qin,et al.  Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications , 2015 .

[48]  R. Romer,et al.  Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization , 2015, Mineralium Deposita.

[49]  Qingfei Wang,et al.  Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China , 2014 .

[50]  E. Carranza,et al.  Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting , 2014 .

[51]  J. Richards,et al.  Increased Magmatic Water Content—The Key to Oligo-Miocene Porphyry Cu-Mo ± Au Formation in the Eastern Gangdese Belt, Tibet , 2014 .

[52]  Cin-Ty A. Lee,et al.  How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics , 2014 .

[53]  R. Hu,et al.  Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China , 2014, Mineralium Deposita.

[54]  R. Loucks Distinctive composition of copper-ore-forming arcmagmas , 2014 .

[55]  S. Wilde,et al.  Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: Petrogenesis and implications for the evolution of Paleo-Tethys , 2013 .

[56]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[57]  Mao Jingwen,et al.  Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings , 2013, Mineralium Deposita.

[58]  J. Mortensen,et al.  Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: Case studies from the northern Canadian Cordillera , 2013 .

[59]  I. Metcalfe,et al.  The Chanthaburi terrane of southeastern Thailand: Stratigraphic confirmation as a disrupted segment of the Sukhothai Arc , 2012 .

[60]  Zhidan Zhao,et al.  Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study , 2012 .

[61]  F. Finger,et al.  Lead contents of S-type granites and their petrogenetic significance , 2012, Contributions to Mineralogy and Petrology.

[62]  Li Su,et al.  Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block , 2011 .

[63]  J. Richards HIGH Sr/Y ARC MAGMAS AND PORPHYRY Cu ± Mo ± Au DEPOSITS: JUST ADD WATER , 2011 .

[64]  Qing-guo Zhai,et al.  Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P–T path , 2011 .

[65]  M. Wilke,et al.  Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity , 2010 .

[66]  O. Jagoutz Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model , 2010 .

[67]  K. Schmidt,et al.  Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China , 2009 .

[68]  Q. Zhang,et al.  Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province , 2009 .

[69]  Q. Zhang,et al.  Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (I): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks , 2009 .

[70]  P. Jugo Sulfur content at sulfide saturation in oxidized magmas , 2009 .

[71]  C. Mandeville,et al.  Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa , 2009 .

[72]  I. Metcalfe,et al.  Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny , 2008 .

[73]  C. Macpherson,et al.  Amphibole “sponge” in arc crust? , 2007 .

[74]  J. Richards,et al.  Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis , 2007 .

[75]  E. Watson,et al.  New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers , 2007 .

[76]  J. Webster,et al.  Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid , 2005 .

[77]  K. Heppe Plate Tectonic Evolution and Mineral Resource Potential of the Lancang River Zone, Southwestern Yunnan, People's Republic of China , 2005 .

[78]  S. Wilde,et al.  Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic , 2003 .

[79]  M. Thirlwall,et al.  Lower crustal granulite xenoliths from the Pannonian Basin, Hungary, Part 2: Sr–Nd–Pb–Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust , 2003 .

[80]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[81]  I. Campbell,et al.  Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile , 2002 .

[82]  I. Metcalfe Permian tectonic framework and palaeogeography of SE Asia , 2002 .

[83]  W. Griffin,et al.  Igneous zircon: trace element composition as an indicator of source rock type , 2002 .

[84]  B. Chappell,et al.  Two contrasting granite types: 25 years later , 2001 .

[85]  H. Förster,et al.  Minor- and trace-element composition of trioctahedral micas: a review , 2001, Mineralogical Magazine.

[86]  P. Sylvester Post-collisional strongly peraluminous granites , 1998 .

[87]  P. Nabelek,et al.  Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks , 1998 .

[88]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[89]  T. Grove,et al.  Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California , 1997 .

[90]  J. Icenhower,et al.  Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O , 1997 .

[91]  R. Linnen,et al.  The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts , 1996 .

[92]  P. Blevin,et al.  Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I- and S-type granites , 1995 .

[93]  F. Bea,et al.  Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study) , 1994 .

[94]  Jiao Jinhua,et al.  Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan , 1994 .

[95]  A. P. Douce,et al.  Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability , 1993 .

[96]  N. Harris,et al.  Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya , 1993 .

[97]  S. Kay,et al.  The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska , 1992 .

[98]  Chen Zhu,et al.  F-Cl-OH partitioning between biotite and apatite , 1992 .

[99]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[100]  N. Harris,et al.  Trace element modelling of pelite-derived granites , 1992 .

[101]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[102]  P. Rickwood Boundary lines within petrologic diagrams which use oxides of major and minor elements , 1989 .

[103]  A. Thompson,et al.  Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis , 1988 .

[104]  M. T. Naney Phase equilibria of rock-forming ferromagnesian silicates in granitic systems , 1983 .

[105]  S. Ishihara The Magnetite-series and Ilmenite-series Granitic Rocks , 1977 .

[106]  P. Hans,et al.  Stability of biotite: experiment, theory, and application , 1965 .

[107]  Luan Leilei,et al.  Triassic granite chronology, geochemistry and mica mineralogy of Yunling tin deposit, Southwest Yunnan: Implications for tin mineralization , 2023, Yanshi - xuebao : jikan.

[108]  Fang Wang,et al.  Paleo-Tethyan tectonic evolution of Lancangjiang metamorphic complex: Evidence from SHRIMP U-Pb zircon dating and 40Ar/39Ar isotope geochronology of blueschists in Xiaoheijiang-Xiayun area, Southeastern Tibetan Plateau , 2019, Gondwana Research.

[109]  A. Kent,et al.  ZIRCON COMPOSITIONAL EVIDENCE FOR SULFUR-DEGASSING FROM ORE-FORMING ARC MAGMAS , 2015 .

[110]  Dong-sheng Guo Geochemistry,zircon U-Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications , 2012 .

[111]  Huichao Rui Ore-forming age and the geodynamic background of the Hetaoping lead-zinc deposit in Baoshan,Yunnan , 2010 .

[112]  Chen Yongqing Preliminary division of the metallogenetic belts in the Central South Peninsula of Southeast Asia and their regional ore-forming characteristics , 2009 .

[113]  R. WoNBs Significance of the assemblage titanite * magnetite * quartz in granitic rocks , 2007 .

[114]  R. Linnen,et al.  Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization, in Linnen R.L. and Samson I.M., eds., rare-element geochemistry and mineral deposits. , 2005 .

[115]  B. Chappell,et al.  I- and S-type granites in the Lachlan Fold Belt , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[116]  B. Lehmann Metallogeny of Tin , 1991 .

[117]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[118]  J. Munoz F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits , 1984 .