Chapter 19 – Introduction: Mycorrhizas and the Carbon Cycle

[1]  M. Gryndler,et al.  Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers , 2016, Front. Microbiol..

[2]  P. Schulze-Lefert,et al.  Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent , 2016, Cell.

[3]  E. Kiers,et al.  Long-term agricultural management maximizing hay production can significantly reduce belowground C storage , 2016 .

[4]  D. Hertel,et al.  Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.) , 2016 .

[5]  R. Koide,et al.  The decomposition of ectomycorrhizal fungal necromass , 2016 .

[6]  M. Rillig,et al.  Do arbuscular mycorrhizal fungi stabilize litter‐derived carbon in soil? , 2016 .

[7]  M. Hujslová,et al.  Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi , 2016, Mycorrhiza.

[8]  B. Buyck,et al.  Russulaceae Associated with Mycoheterotroph Monotropa uniflora (Ericaceae) in Tlaxcala, Mexico: A Phylogenetic Approach , 2015, Cryptogamie, Mycologie.

[9]  M. V. D. van der Heijden,et al.  Regulation of resource exchange in the arbuscular mycorrhizal symbiosis , 2015, Nature Plants.

[10]  E. Blagodatskaya,et al.  Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions , 2015 .

[11]  M. Guescini,et al.  Sugar transporters in the black truffle Tuber melanosporum: from gene prediction to functional characterization. , 2015, Fungal genetics and biology : FG & B.

[12]  A. Kohler,et al.  Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays , 2015, Plant and Soil.

[13]  P. Hatcher,et al.  Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin , 2015 .

[14]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[15]  E. Novotny,et al.  BIOCHAR: PYROGENIC CARBON FOR AGRICULTURAL USE - A CRITICAL REVIEW , 2015 .

[16]  E. Kiers,et al.  Partner selection in the mycorrhizal mutualism. , 2015, The New phytologist.

[17]  B. Lindahl,et al.  Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. , 2015, The New phytologist.

[18]  P. Kennedy,et al.  Moving beyond the black-box: fungal traits, community structure, and carbon sequestration in forest soils. , 2015, The New phytologist.

[19]  J. Bever Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. , 2015, The New phytologist.

[20]  M. V. D. van der Heijden,et al.  Mycorrhizal ecology and evolution : the past , the present , and the future , 2015 .

[21]  D. Beerling,et al.  First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2 , 2014, The New phytologist.

[22]  M. Rillig,et al.  A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces , 2014 .

[23]  A. Hartmann,et al.  15. Rhizosphere Interactions , 2014 .

[24]  H. Rasmussen,et al.  Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae , 2014 .

[25]  E. Kiers,et al.  Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. , 2014, The New phytologist.

[26]  E. Bergin,et al.  Exploring the origins of carbon in terrestrial worlds. , 2014, Faraday discussions.

[27]  M. Gryndler,et al.  Tuber aestivum association with non-host roots , 2014, Mycorrhiza.

[28]  G. Gebauer,et al.  Carbon and nitrogen gain during the growth of orchid seedlings in nature. , 2014, The New phytologist.

[29]  C. Unterborn,et al.  THE ROLE OF CARBON IN EXTRASOLAR PLANETARY GEODYNAMICS AND HABITABILITY , 2013, 1311.0024.

[30]  Davey L. Jones,et al.  Life in the 'charosphere' - Does biochar in agricultural soil provide a significant habitat for microorganisms? , 2013 .

[31]  T. Kosaki,et al.  Rapid turnover of organic acids in a Dystric Brunisol under a spruce-lichen forest in northern Saskatchewan, Canada , 2013, Canadian Journal of Soil Science.

[32]  W. AndersonDarwin,et al.  Rapid turnover of organic acids in a Dystric Brunisol under a spruce–lichen forest in northern Saskatchewan, Canada , 2013 .

[33]  Benjamin L Turner,et al.  Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. , 2013, FEMS microbiology ecology.

[34]  M. Gryndler,et al.  Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? , 2013, Front. Plant Sci..

[35]  Zhanqing Hao,et al.  Soil organic carbon in an old-growth temperate forest: Spatial pattern, determinants and bias in its quantification , 2013 .

[36]  Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis , 2013, Plant and Soil.

[37]  N. Verhoest,et al.  Temporal variation of rhizodeposit-C assimilating microbial communities in a natural wetland , 2012, Biology and Fertility of Soils.

[38]  D. Myrold,et al.  The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats , 2013, Biogeochemistry.

[39]  R. Menezes,et al.  Glomalin: characteristics, production, limitations and contribution to soils , 2012 .

[40]  E. Schuur,et al.  Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi , 2012, Biogeochemistry.

[41]  M. Torn,et al.  Fire-derived organic carbon in soil turns over on a centennial scale , 2012 .

[42]  J. Yokoyama,et al.  Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). , 2012, American journal of botany.

[43]  T. Boller,et al.  Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade1[W][OA] , 2012, Plant Physiology.

[44]  D. Herman,et al.  Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. , 2012, FEMS microbiology ecology.

[45]  K. Treseder,et al.  Extracellular enzyme activity in the mycorrhizospheres of a boreal fire chronosequence , 2012 .

[46]  Christopher Walker,et al.  Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. , 2012, The New phytologist.

[47]  G. Schaumann,et al.  Molecular modeling of soil organic matter: Squaring the circle? , 2011 .

[48]  M. Selosse,et al.  Noël Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago , 2011, Symbiosis.

[49]  S. Allison,et al.  Substrate concentration and enzyme allocation can affect rates of microbial decomposition. , 2011, Ecology.

[50]  O. Eriksson,et al.  The evolutionary ecology of dust seeds , 2011 .

[51]  I. Dickie,et al.  Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. , 2011, Ecology letters.

[52]  Kurt Ineichen,et al.  Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis1[W] , 2011, Plant Physiology.

[53]  J. Lehmann,et al.  Modeling black carbon degradation and movement in soil , 2011, Plant and Soil.

[54]  B. Kaplin,et al.  Seed Germination of Habenaria repens (Orchidaceae) in situ Beyond its Range, and its Potential for Assisted Migration Imposed by Climate Change , 2011 .

[55]  J. Jansa,et al.  Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi , 2011, Mycorrhiza.

[56]  M. Weiß,et al.  Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes , 2011, PloS one.

[57]  Avinash Sreedasyam,et al.  Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome , 2011, BMC Systems Biology.

[58]  P. Olsson,et al.  Plants as resource islands and storage units--adopting the mycocentric view of arbuscular mycorrhizal networks. , 2010, FEMS microbiology ecology.

[59]  J. Bever,et al.  Rooting theories of plant community ecology in microbial interactions. , 2010, Trends in ecology & evolution.

[60]  G. Kowalchuk,et al.  Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 , 2010, Proceedings of the National Academy of Sciences.

[61]  U. Kõljalg,et al.  Rangewide analysis of fungal associations in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America. , 2010, American journal of botany.

[62]  M. Bradford,et al.  Global patterns in belowground communities. , 2009, Ecology letters.

[63]  I. Anderson,et al.  Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. , 2009, The New phytologist.

[64]  M. Selosse,et al.  Green plants that feed on fungi: facts and questions about mixotrophy. , 2009, Trends in plant science.

[65]  F. Berendse,et al.  The effect of nutrient supply and light intensity on tannins and mycorrhizal colonisation in Dutch heathland ecosystems , 2009, Plant Ecology.

[66]  S. Allison,et al.  Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change , 2008 .

[67]  D. Read,et al.  Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. , 2008, The New phytologist.

[68]  J. Freudenstein,et al.  Molecular evolution of rbcL in the mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae). , 2008, Molecular phylogenetics and evolution.

[69]  M. V. D. van der Heijden,et al.  The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. , 2008, Ecology letters.

[70]  B. Goffinet,et al.  Origin and relationships of the myco-heterotrophic liverwort Cryptothallus mirabilis Malmb. (Metzgeriales, Marchantiophyta) , 2008 .

[71]  T. Cajthaml,et al.  Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest , 2007 .

[72]  M. Allen,et al.  Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. , 2007, Journal of experimental botany.

[73]  J. Jastrow,et al.  Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration , 2007 .

[74]  U. Nehls,et al.  Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. , 2007, Phytochemistry.

[75]  H. Schnyder,et al.  Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. , 2006, The New phytologist.

[76]  David Johnson,et al.  Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland , 2006 .

[77]  J. Kirkegaard,et al.  Rhizosphere biology and crop productivity—a review , 2006 .

[78]  D. Read,et al.  Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. , 2006, The New phytologist.

[79]  F. Loreto,et al.  Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae , 2005, Molecular ecology.

[80]  M. Maraun,et al.  Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi , 2005, Mycorrhiza.

[81]  W. Bloh,et al.  Dynamic Habitability of Extrasolar Planetary Systems , 2005 .

[82]  T. Bell,et al.  Protocorm mycobionts of the Federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley, and a technique to prompt leaf elongation in seedlings , 2005 .

[83]  T. Vrålstad Are ericoid and ectomycorrhizal fungi part of a common guild? , 2004, The New phytologist.

[84]  Y. Shachar-Hill,et al.  The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. , 2004, The New phytologist.

[85]  S. Scheu,et al.  Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation , 2004 .

[86]  T. Bruns,et al.  Evidence for mycorrhizal races in a cheating orchid , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[87]  A. Schüßler,et al.  Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi , 2002, Plant and Soil.

[88]  A. Michelsen,et al.  Shoot biomass, δ13C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change , 2004, Oecologia.

[89]  J. Cairney,et al.  Utilisation of carbon substrates by multiple genotypes of ericoid mycorrhizal fungal endophytes from eastern Australian Ericaceae , 2004, Mycorrhiza.

[90]  M. Selosse,et al.  Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles , 2004, Microbial Ecology.

[91]  R. Koide,et al.  Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). , 2003, The New phytologist.

[92]  C. Ramsey,et al.  Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C , 2003, Science.

[93]  R. Koide,et al.  Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation , 2003 .

[94]  J. Pérez‐Moreno,et al.  Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? , 2003, The New phytologist.

[95]  D. Read,et al.  Epiparasitic plants specialized on arbuscular mycorrhizal fungi , 2002, Nature.

[96]  Mark C. Brundrett,et al.  Coevolution of roots and mycorrhizas of land plants. , 2002, The New phytologist.

[97]  A. Jumpponen Dark septate endophytes – are they mycorrhizal? , 2001, Mycorrhiza.

[98]  A. Johansen,et al.  Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. , 2000 .

[99]  S. Recous,et al.  Carbon, nitrogen and microbial gradients induced by plant residues decomposing in soil , 1999 .

[100]  B. Lindahl,et al.  Translocation of 32P between interacting mycelia of a wood‐decomposing fungus and ectomycorrhizal fungi in microcosm systems , 1999 .

[101]  Abraham Lerman,et al.  BIOGEOCHEMICAL RESPONSES OF THE CARBON CYCLE TO NATURAL AND HUMAN PERTURBATIONS: PAST, PRESENT, AND FUTURE , 1999 .

[102]  C. Scrimgeour,et al.  Carbon transfer between plants and its control in networks of arbuscular mycorrhizas , 1998 .

[103]  D. Read,et al.  Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi , 1997 .

[104]  D. Read,et al.  Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi , 1996 .

[105]  I. Chet,et al.  Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum , 1996 .

[106]  T. Szaro,et al.  Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites , 1996, Nature.

[107]  D. Mitchell,et al.  Utilization of sucrose by Hymenoscyphus ericae (an ericoid endomycorrhizal fungus) and ectomycorrhizal fungi , 1995 .

[108]  A. Varma,et al.  Utilization of Cell-Wall Related Carbohydrates by Ericoid Mycorrhizal Endophytes , 1994 .

[109]  Daniel M. Kammen,et al.  On the origin and magnitude of pre-industrial anthropogenic CO2 and CH4 emissions , 1993 .

[110]  I. Jakobsen,et al.  Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants , 1990 .

[111]  D. Read,et al.  Substrate decomposition and product release by ericoid and ectomycorrhizal fungi grown on protein , 1990 .

[112]  R. Kucey,et al.  Carbon flow in plant microbial associations. , 1981, Science.

[113]  P. Gadgil,et al.  Mycorrhiza and Litter Decomposition , 1971, Nature.