A Remark on One-Wayness versus Pseudorandomness

Every pseudorandom generator is in particular a one-way function. If we only consider part of the output of the pseudorandom generator is this still one-way? Here is a general setting formalizing this question. Suppose G:{0,1} n → {0,1}l(n) is a pseudorandom generator with stretch l(n). Let M R ∈ {0,1} m(n)×l(n) be a linear operator computable in polynomial time given randomness R. Consider the function $$F(x,R)=\big(M_R G(x), R \big)$$

[1]  Yuval Ishai,et al.  Cryptography in NC0 , 2004, SIAM J. Comput..

[2]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[3]  Omer Reingold,et al.  On the Power of the Randomized Iterate , 2006, SIAM J. Comput..

[4]  Michael Luby,et al.  A study of password security , 1987, Journal of Cryptology.

[5]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[6]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[7]  ApplebaumBenny,et al.  Cryptography in $NC^0$ , 2006 .

[8]  Omer Reingold,et al.  Efficient Pseudorandom Generators from Exponentially Hard One-Way Functions , 2006, ICALP.

[9]  Andrew V. Goldberg,et al.  Lower bounds for pseudorandom number generators , 1989, 30th Annual Symposium on Foundations of Computer Science.

[10]  Omer Reingold,et al.  Efficiency improvements in constructing pseudorandom generators from one-way functions , 2010, STOC '10.

[11]  Periklis A. Papakonstantinou,et al.  Limits on the Stretch of Non-adaptive Constructions of Pseudo-Random Generators , 2011, TCC.

[12]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[13]  S. Rajsbaum Foundations of Cryptography , 2014 .

[14]  B. Applebaum Cryptography in NC0 , 2014 .

[15]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[16]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[17]  A. Mukhopadhyay On the probability that the determinant of an n x n matrix over a finite field vanishes , 1984, Discret. Math..

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[19]  Yuval Ishai,et al.  COMPUTATIONALLY PRIVATE RANDOMIZING POLYNOMIALS AND THEIR APPLICATIONS , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[20]  Richard M. Karp,et al.  The rank of sparse random matrices over finite fields , 1997, Random Struct. Algorithms.