Ambitwistor strings at null infinity and (subleading) soft limits

The relationship between BMS symmetries at null infinity and Weinberg's soft theorems for gravitons and photons together with their subleading extensions are developed using ambitwistor string theory. Ambitwistor space is the phase space of complex null geodesics in complexified space-time. We show how it can be canonically identified with the cotangent bundle of complexified null infinity. BMS symmetries of null infinity lift to give a Hamiltonian action on ambitwistor space, both in general dimension and in its twistorial four-dimensional representation. General vertex operators arise from Hamiltonians generating diffeomorphisms of ambitwistor space that determine the scattering from past to future null infinity. When a momentum eigenstate goes soft, the diffeomorphism defined by its leading and its subleading part are extended BMS generators realized in the world sheet conformal field theory of the ambitwistor string. More generally, this gives an explicit perturbative correspondence between the scattering of null geodesics and that of the gravitational field via ambitwistor string theory.

[1]  L. Mason,et al.  Ambitwistor strings and the scattering equations , 2013, Journal of High Energy Physics.

[2]  David Skinner,et al.  Perturbative gravity at null infinity , 2014, 1405.5122.

[3]  F. Cachazo,et al.  Are Soft Theorems Renormalized , 2014, 1405.3413.

[4]  A. Larkoski Conformal invariance of the subleading soft theorem in gauge theory , 2014, 1405.2346.

[5]  Song He,et al.  Loop corrections to soft theorems in gauge theories and gravity , 2014, 1405.1410.

[6]  Z. Bern,et al.  On loop corrections to subleading soft behavior of gluons and gravitons , 2014, 1405.1015.

[7]  Junichiro Kawamura,et al.  The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation , 2014, 1405.0779.

[8]  A. Volovich,et al.  Subleading soft theorem in arbitrary dimensions from scattering equations. , 2014, Physical review letters.

[9]  L. Mason,et al.  Ambitwistor strings in four dimensions. , 2014, Physical review letters.

[10]  Eduardo Casali Soft sub-leading divergences in Yang-Mills amplitudes , 2014, 1404.5551.

[11]  M. M. Sheikh-Jabbari,et al.  On quantization of AdS3 gravity I: semi-classical analysis , 2014, 1404.4472.

[12]  A. Strominger,et al.  Evidence for a New Soft Graviton Theorem , 2014, 1404.4091.

[13]  A. Strominger,et al.  BMS supertranslations and Weinberg’s soft graviton theorem , 2014, Journal of High Energy Physics.

[14]  David Skinner,et al.  Ambitwistor strings and the scattering equations at one loop , 2013, Journal of High Energy Physics.

[15]  A. Strominger,et al.  On BMS invariance of gravitational scattering , 2013, 1312.2229.

[16]  L. Mason,et al.  Ambitwistor strings and the scattering equations , 2013, 1311.2564.

[17]  Song He,et al.  Scattering of massless particles: scalars, gluons and gravitons , 2013, 1309.0885.

[18]  A. Strominger Asymptotic symmetries of Yang-Mills theory , 2013, 1308.0589.

[19]  Song He,et al.  Scattering of massless particles in arbitrary dimensions. , 2013, Physical review letters.

[20]  Song He,et al.  Scattering equations and Kawai-Lewellen-Tye orthogonality , 2013, 1306.6575.

[21]  Song He,et al.  Scattering in three dimensions from rational maps , 2013, 1306.2962.

[22]  G. Barnich,et al.  BMS charge algebra , 2011, 1106.0213.

[23]  C. White Factorization properties of soft graviton amplitudes , 2011, 1103.2981.

[24]  G. Barnich,et al.  Supertranslations call for superrotations , 2011, 1102.4632.

[25]  G. Barnich,et al.  Symmetries of asymptotically flat four-dimensional spacetimes at null infinity revisited. , 2009, Physical review letters.

[26]  N. Nekrasov Lectures on curved beta-gamma systems, pure spinors, and anomalies , 2005, hep-th/0511008.

[27]  E. Witten Two-dimensional models with (0,2) supersymmetry: perturbative aspects , 2005, hep-th/0504078.

[28]  E. Witten,et al.  Conformal Supergravity in Twistor-String Theory , 2004, hep-th/0406051.

[29]  A. Ishibashi,et al.  Asymptotic flatness at null infinity in higher dimensional gravity , 2003, hep-th/0311178.

[30]  A. Ishibashi,et al.  Asymptotic flatness and Bondi energy in higher dimensional gravity , 2003, gr-qc/0304054.

[31]  D. Blair Gravitational waves in general relativity , 1991 .

[32]  L. Mason,et al.  Conformal gravity, the Einstein equations and spaces of complex null geodesics , 1987 .

[33]  E. Witten Twistor - Like Transform in Ten-Dimensions , 1986 .

[34]  M. Eastwood,et al.  Edth-a differential operator on the sphere , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  A. Ashtekar Asymptotic Quantization of the Gravitational Field , 1981 .

[36]  P. Green,et al.  Non-self-dual gauge fields , 1978 .

[37]  E. Witten An interpretation of classical Yang-Mills theory , 1978 .

[38]  R. S. Ward,et al.  Self-dual gauge fields , 1977 .

[39]  R. Penrose,et al.  Twistor theory: An approach to the quantisation of fields and space-time , 1973 .

[40]  R. Jackiw Low-Energy Theorems for Massless Bosons: Photons and Gravitons , 1968 .

[41]  D. Gross,et al.  Low-Energy Theorem for Graviton Scattering , 1968 .

[42]  S. Weinberg Infrared photons and gravitons , 1965 .

[43]  R. Sachs Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  H. Bondi,et al.  Gravitational Waves in General Relativity , 1960 .

[46]  F. Low Bremsstrahlung of very low-energy quanta in elementary particle collisions , 1958 .

[47]  A. Strominger,et al.  Semiclassical Virasoro symmetry of the quantum gravity S-matrix , 2014 .

[48]  K. Colwell Conformal Gravity , 2011 .

[49]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[50]  Roger Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[51]  C. LeBrun Spaces of complex null geodesics in complex-Riemannian geometry , 1983 .

[52]  N. Kroll,et al.  Extension of the Low Soft-Photon Theorem , 1968 .

[53]  R. Sachs Gravitational waves in general relativity VIII , 1962 .