Characterization of inositol 1,4,5-trisphosphate receptor isoform mRNA expression and regulation in rat pancreatic islets, RINm5F cells and betaHC9 cells.

The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ channel that plays a role in the regulation of insulin secretion. In rat isolated pancreatic islets the expression of types I, II and III InsP3R mRNA was identified by reverse transcriptase-polymerase chain reaction and confirmed by cDNA cloning and sequencing. The islet ratios of types I, II and III InsP3R mRNA to beta-actin mRNA were 0.08 +/- 0.02, 0.08 +/- 0.03 and 0.25 +/- 0.04 respectively. Types I, II and III InsP3R mRNA were also expressed in rat (RINm5F) and mouse (betaHC9) pancreatic beta-cell lines, and rat cerebellum. Type III InsP3R mRNA was quantitatively the most abundant form in rat islets and RINm5F cells. In betaHC9 cells, types II and III InsP3R mRNA were expressed at similar levels, and in much greater abundance than type I mRNA. Type III was the least abundant InsP3R mRNA in cerebellum. Culture of betaHC9 cells for 5 days at 2.8 and 25 mM glucose, or RINm5F cells for 7 days at 5.5 and 20 mM glucose, resulted in significantly enhanced expression of type III, but not types I and II, InsP3R mRNA in the cells at the higher glucose concentrations. During short-term (0.5-2 h) incubations, betaHC9 cell type III InsP3R mRNA levels increased in response to glucose in a time- and concentration-dependent manner. Actinomycin D inhibited the glucose response. Alpha-ketoisocaproic acid also stimulated betaHC9 cell type III InsP3R mRNA expression in a concentration-dependent manner, whereas 2-deoxyglucose and 3-O-methylglucose were without effect. The different levels of expression of mRNA for three InsP3R isoforms in islets and insulinoma cells, and the influence of glucose and alpha-ketoisocaproic acid on the expression of type III mRNA, suggests that nutrient metabolism plays a role in the regulation of this gene and that the function of InsP3R subtypes may be unique with each playing a distinct role in beta-cell signal transduction and insulin secretion.

[1]  P. Bradford,et al.  Inositol trisphosphate receptor gene expression and hormonal regulation in osteoblast‐like cell lines and primary osteoblastic cell cultures , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[2]  S. G. Laychock,et al.  Epiandrosterone and dehydroepiandrosterone affect glucose oxidation and interleukin-1 beta effects in pancreatic islets. , 1996, Endocrinology.

[3]  R. Wojcikiewicz,et al.  Type-I, Type-II and Type-III Inositol 1,4,5-Trisphosphate Receptor Co-Immunoprecipitation as Evidence for the Existence of Heterotetrameric Receptor Complexes , 1995 .

[4]  R. Wojcikiewicz,et al.  Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types , 1995, The Journal of Biological Chemistry.

[5]  E. Van Obberghen,et al.  Glucose, Other Secretagogues, and Nerve Growth Factor Stimulate Mitogen-activated Protein Kinase in the Insulin-secreting β-Cell Line, INS-1 (*) , 1995, The Journal of Biological Chemistry.

[6]  T. Südhof,et al.  Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. , 1994, The Journal of biological chemistry.

[7]  M. Bootman,et al.  Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. , 1994, The Journal of biological chemistry.

[8]  C. Ross,et al.  Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Meldolesi,et al.  Molecular and cellular physiology of intracellular calcium stores. , 1994, Physiological reviews.

[10]  A. Maranto Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. , 1994, The Journal of biological chemistry.

[11]  A. Kahn,et al.  The pyruvate kinase gene as a model for studies of glucose-dependent regulation of gene expression in the endocrine pancreatic beta-cell type. , 1993, The Journal of biological chemistry.

[12]  S. Joseph,et al.  Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. , 1993, The Journal of biological chemistry.

[13]  M. Prentki,et al.  Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic beta-cell line (INS-1). , 1993, The Journal of biological chemistry.

[14]  S. Seino,et al.  Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. , 1993, The Journal of biological chemistry.

[15]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[16]  S. Snyder,et al.  IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. , 1992, Science.

[17]  S. Snyder,et al.  Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Südhof,et al.  Structure of a novel InsP3 receptor. , 1991, The EMBO journal.

[19]  G. Vincendon,et al.  Stereospecific inositol 1,4,5-[32P]trisphosphate binding to isolated rat liver nuclei: evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Yoo,et al.  Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles. , 1990, The Journal of biological chemistry.

[21]  T. Südhof,et al.  Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. , 1990, The Journal of biological chemistry.

[22]  S. G. Laychock Glucose metabolism, second messengers and insulin secretion. , 1990, Life sciences.

[23]  Teiichi Furuichi,et al.  Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400 , 1989, Nature.

[24]  Christopher A. Ross,et al.  Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons , 1989, Nature.

[25]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.