CRISTA-NF measurements with unprecedented vertical resolution during the RECONCILE aircraft campaign

Abstract. The Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers (CRISTA-NF), an airborne infrared limb-sounder, was operated aboard the high-flying Russian research aircraft M55-Geophysica during the Arctic RECONCILE campaign from January to March 2010. This paper describes the calibration process of the instrument and the retrieval algorithm employed and then proceeds to present retrieved trace gas volume mixing ratio cross-sections for one specific flight in this campaign. We are able to resolve the uppermost troposphere/lower stratosphere for several trace gas species for several kilometres below the flight altitude (16 to 19 km) with an unprecedented vertical resolution of 400 to 500 m for the limb-sounding technique. The instrument points sideways with respect to the flight direction. Therefore, the observations are also characterised by a rather high horizontal sampling along the flight track, which provides a full vertical profile every ≈15 km. Assembling the vertical trace gas profiles derived from CRISTA-NF measurements to cross-sections shows filaments of vortex and extra-vortex air masses in the vicinity of the polar vortex. During this campaign, the M55-Geophysica carried further instruments enabling trace gas volume mixing ratios derived from CRISTA-NF to be validated by comparing them with measurements by the in situ instruments HAGAR and FOZAN and observations by MIPAS-STR. This validation suggests that the retrieved trace gas volume mixing ratios are both qualitatively and quantitatively reliable.

[1]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[2]  N. Sitnikov,et al.  The FOZAN-II Fast-Response Chemiluminescent Airborne Ozone Analyzer , 2001 .

[3]  Martin Riese,et al.  GLObal limb Radiance Imager for the Atmosphere (GLORIA): Scientific objectives , 2004 .

[4]  John C. Gille,et al.  The Limb Infrared Monitor of the Stratosphere: Experiment Description, Performance, and Results , 1984 .

[5]  M. Höpfner,et al.  Antarctic NAT PSC belt of June 2003: Observational validation of the mountain wave seeding hypothesis , 2009 .

[6]  P. Preusse,et al.  High resolution limb observations of clouds by the CRISTA-NF experiment during the SCOUT-O3 tropical aircraft campaign , 2008 .

[7]  Martin Riese,et al.  CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - CRISTA , 1999, Optical Remote Sensing of the Atmosphere.

[8]  M. Höpfner,et al.  Vertical profile of peroxyacetyl nitrate (PAN) from MIPAS-STR measurements over Brazil in February 2005 and its contribution to tropical UT NO y partitioning , 2008 .

[9]  Martin Riese,et al.  Measurements of trace gases by the cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA) experiment , 1997 .

[10]  Martin Riese,et al.  The CRISTA‐2 mission , 2002 .

[11]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[12]  Martin Riese,et al.  Instrument concept and preliminary performance analysis of GLORIA , 2006 .

[13]  M. Ern,et al.  CRISTA-NF measurements of water vapor during the SCOUT-O3 Tropical Aircraft Campaign , 2009 .

[14]  Martin Riese,et al.  Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA , 2010 .

[15]  Martin Riese,et al.  Stratospheric transport by planetary wave mixing as observed during CRISTA‐2 , 2002 .

[16]  D. Hauglustaine,et al.  MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets , 2007 .

[17]  P. Bernath,et al.  First measurements of CFC‐113 and HCFC‐142b from space using ACE‐FTS infrared spectra , 2005 .

[18]  M. Ern,et al.  Radiance calibration of CRISTA-NF , 2009 .

[19]  J. Ungermann Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements , 2011 .

[20]  M. Kiefer,et al.  Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) , 2007 .

[21]  Fabrizio Ravegnani,et al.  MIPAS-STR measurements in the Arctic UTLS in winter/spring 2010: instrument characterization, retrieval and validation , 2011 .

[22]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[23]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[24]  M. Höpfner,et al.  Vertical profile of peroxyacetyl nitrate (PAN) from MIPAS-STR measurements over Brazil in February 2005 and the role of PAN in the UT tropical NO y partitioning , 2008 .

[25]  Andrew Gettelman,et al.  THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE , 2011 .

[26]  P. E. Morris,et al.  Fast monochromatic radiative transfer calculations for limb sounding , 2002 .

[27]  H. Schlager,et al.  Simulation of denitrification and ozone loss for the Arctic winter 2002/2003 , 2004 .

[28]  W. L. Godson The evaluation of infra‐red radiative fluxes due to atmospheric water vapour , 1953 .

[29]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[30]  Lars Hoffmann,et al.  Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies , 2009 .

[31]  W. Fastie Ebert Spectrometer Reflections , 1991 .

[32]  D. Edwards,et al.  Forward modeling and radiative transfer for the NASA EOS‐Aura High Resolution Dynamics Limb Sounder (HIRDLS) instrument , 2006 .

[33]  Peter Barthol,et al.  CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - CRISTA , 1999, Optical Remote Sensing of the Atmosphere.

[34]  H. Schlager,et al.  Quantifying transport into the Arctic lowermost stratosphere , 2009 .

[35]  L. Gordley,et al.  Rapid inversion of limb radiance data using an emissivity growth approximation. , 1981, Applied optics.

[36]  M. Ridolfi,et al.  MIPAS database: Validation of HNO 3 line parameters using MIPAS satellite measurements , 2006 .

[37]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[38]  C. Keim Entwicklung und Verifikation der Sichtlinienstabilisierung für MIPAS auf dem hochfliegenden Forschungsflugzeug M55 Geophysica , 2002 .

[39]  C. Piesch,et al.  Design of a MIPAS Instrument for high-altitude aircraft , 1996 .

[40]  T. Steck,et al.  Constrained profile retrieval applied to the observation mode of the michelson interferometer for passive atmospheric sounding. , 2001, Applied optics.

[41]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[42]  Peter F. Bernath,et al.  Atmospheric chemistry experiment (ACE): mission overview , 2004, SPIE Optics + Photonics.

[43]  G. Brasseur,et al.  Three‐dimensional simulation of stratospheric trace gas distributions measured by CRISTA , 1999 .

[44]  Martin Riese,et al.  Cryogenic infrared spectrometers and telescopes for the atmosphere: new frontiers , 2004, SPIE Remote Sensing.

[45]  R. P. Lowe,et al.  Atmospheric Chemistry Experiment (ACE): Mission overview. , 2005 .

[46]  Michael P. Weinreb,et al.  Method to Apply Homogeneous-Path Transmittance Models to Inhomogeneous Atmospheres. , 1973 .

[47]  U. Naumann,et al.  A 3-D tomographic trajectory retrieval for the air-borne limb-imager GLORIA , 2011 .

[48]  E. J. Williamson,et al.  The stratospheric and mesospheric sounder on Nimbus 7 , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  J. Lambert,et al.  The horizontal resolution of MIPAS , 2008 .

[50]  C. Piesch,et al.  MIPAS-STR data analysis of APE-GAIA measurements , 2000 .

[51]  P. Preusse,et al.  CRISTA-NF measurements during the AMMA-SCOUT-O3 aircraft campaign , 2010 .

[52]  M Höpfner,et al.  Atmospheric ray path modeling for radiative transfer algorithms. , 1999, Applied optics.

[53]  Rolf Müller,et al.  Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology , 2008 .