GUILDify v2.0: A Tool to Identify Molecular Networks Underlying Human Diseases, Their Comorbidities and Their Druggable Targets.

[1]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[2]  이현주 Q. , 2005 .

[3]  E. Zintzaras,et al.  ACE (I/D) polymorphism and response to treatment in coronary artery disease: a comprehensive database and meta-analysis involving study quality evaluation , 2009, BMC Medical Genetics.

[4]  Baldomero Oliva,et al.  Biana: a software framework for compiling biological interactions and analyzing networks , 2010, BMC Bioinformatics.

[5]  N. Ridgway,et al.  Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. , 2011, Journal of thoracic disease.

[6]  Haiyuan Yu,et al.  Network-based methods for human disease gene prediction. , 2011, Briefings in functional genomics.

[7]  Roded Sharan,et al.  PRINCIPLE: a tool for associating genes with diseases via network propagation , 2011, Bioinform..

[8]  Yves Moreau,et al.  PINTA: a web server for network-based gene prioritization from expression data , 2011, Nucleic Acids Res..

[9]  E. Guney,et al.  Exploiting Protein-Protein Interaction Networks for Genome-Wide Disease-Gene Prioritization , 2012, PloS one.

[10]  F. Dhombres,et al.  Representation of rare diseases in health information systems: The orphanet approach to serve a wide range of end users , 2012, Human mutation.

[11]  Gary D. Bader,et al.  GeneMANIA Prediction Server 2013 Update , 2013, Nucleic Acids Res..

[12]  Yana Bromberg,et al.  Chapter 15: Disease Gene Prioritization , 2013, PLoS Comput. Biol..

[13]  Mario Albrecht,et al.  NetworkPrioritizer: a versatile tool for network-based prioritization of candidate disease genes or other molecules , 2013, Bioinform..

[14]  Baldomero Oliva,et al.  GUILDify: a web server for phenotypic characterization of genes through biological data integration and network-based prioritization algorithms , 2014, Bioinform..

[15]  S. Mohapatra,et al.  : DISEASE ONTOLOGY , 2014 .

[16]  A. Barabasi,et al.  Uncovering disease-disease relationships through the incomplete interactome , 2015, Science.

[17]  Michael P. Schroeder,et al.  In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. , 2015, Cancer cell.

[18]  Albert-László Barabási,et al.  A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome , 2015, PLoS Comput. Biol..

[19]  A. Barabasi,et al.  A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. , 2015, Human molecular genetics.

[20]  Gang Fu,et al.  Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data , 2014, Nucleic Acids Res..

[21]  Cathy H. Wu,et al.  UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Research.

[22]  Àlex Bravo,et al.  Text mining and expert curation to develop a database on psychiatric diseases and their genes , 2017, SMBM.

[23]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[24]  Gary D. Bader,et al.  Cytoscape.js: a graph theory library for visualisation and analysis , 2015, Bioinform..

[25]  A. Barabasi,et al.  Tissue Specificity of Human Disease Module , 2016, Scientific Reports.

[26]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[27]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2017 , 2016, Nucleic Acids Res..

[28]  Michael F. Wangler,et al.  Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research , 2017, Genetics.

[29]  Emel Sen Kilic,et al.  Enriching Traditional Protein-protein Interaction Networks with Alternative Conformations of Proteins , 2017, Scientific Reports.

[30]  Tudor I. Oprea,et al.  DrugCentral: online drug compendium , 2016, Nucleic Acids Res..

[31]  M. Cruz-Monteagudo,et al.  Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis , 2017, BMC Medical Genomics.

[32]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[33]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[34]  G. Tsiamis,et al.  Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep , 2017, Genetics Selection Evolution.

[35]  C. Wi,et al.  Asthma and the Risk of Rheumatoid Arthritis: An Insight into the Heterogeneity and Phenotypes of Asthma , 2017, Tuberculosis and respiratory diseases.

[36]  Jianya Zhou,et al.  Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. , 2017, Cancer letters.

[37]  E. Guney,et al.  Genetic and functional characterization of disease associations explains comorbidity , 2017, Scientific Reports.

[38]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[39]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[40]  Alex H. Wagner,et al.  DGIdb 3.0: a redesign and expansion of the drug–gene interaction database , 2017, bioRxiv.

[41]  E. Guney,et al.  Proximal Pathway Enrichment Analysis for Targeting Comorbid Diseases via Network Endopharmacology , 2018, Pharmaceuticals.

[42]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[43]  Palbociclib , 2020, Reactions Weekly.

[44]  Tsuyoshi Murata,et al.  {m , 1934, ACML.