Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm

This study evaluates the potential of using aerosol optical depth (τa) measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP (Generalized Retrieval of Aerosol and Surface Properties) code for numerical testing of six different aerosol models with different aerosol loads. The direct numerical simulations (self-consistency tests) indicate that the GRASP-AOD retrieval provides modal aerosol optical depths (fine and coarse) to within 0.01 of the input values. The retrieval of the fine-mode radius, width and volume concentration are stable and precise if the real part of the refractive index is known. The coarse-mode properties are less accurate, but they are significantly improved when additional a priori information is available. The tests with random simulated errors show that the uncertainty in the bimodal log-normal size distribution parameters increases as the aerosol load decreases. Similarly, the reduction in the spectral range diminishes the stability of the retrieved parameters. In addition to these numerical studies, we used optical depth observations at eight AERONET locations to validate our results with the standard AERONET inversion products. We found that bimodal log-normal size distributions serve as useful input assumptions, especially when the measurements have inadequate spectral coverage and/or limited accuracy, such as moon photometry. Comparisons of the mode median radii between GRASP-AOD and AERONET indicate average differences of 0.013 μm for the fine mode and typical values of 0.2–0.3 μm for the coarse mode. The dominant mode (i.e. fine or coarse) indicates a 10 % difference in mode radii between the GRASP-AOD and AERONET inversions, and the average of the difference in volume concentration is around 17 % for both modes. The retrieved values of the fine-mode τa(500) using GRASP-AOD are generally between those values obtained by the standard AERONET inversion and the values obtained by the AERONET spectral deconvolution algorithm (SDA), with differences typically lower than 0.02 between GRASP-AOD and both algorithms. Finally, we present some examples of application of GRASP-AOD inversion using moon photometry and the airborne PLASMA sun photometer during the ChArMEx summer 2013 campaign in the western Mediterranean.

[1]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[2]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[3]  David N. Whiteman,et al.  Linear estimation of particle bulk parameters from multi-wavelength lidar measurements , 2011 .

[4]  Simple approaches and inversion methods retrieve particle size parameters of atmospheric desert aerosols , 1998 .

[5]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[6]  A. Ångström,et al.  Techniques of Determinig the Turbidity of the Atmosphere , 1961 .

[7]  Zhengqiang Li,et al.  Observations of residual submicron fine aerosol particles related to cloud and fog processing during a major pollution event in Beijing , 2014 .

[8]  I. Veselovskii,et al.  Retrieval of spatio-temporal distributions of particle parameters from multiwavelength lidar measurements using the linear estimation technique and comparison with AERONET , 2013 .

[9]  D. Tanré,et al.  Characterization of a dust layer by inversion of ground-based photometric measurements at two altitudes in tenerife , 1998 .

[10]  A. Kokhanovsky,et al.  Retrieval of aerosol mass load (PM 10 ) from MERIS/Envisat top of atmosphere spectral reflectance measurements over Germany , 2011 .

[11]  J. Notholt,et al.  Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999 , 2002 .

[12]  T. Eck,et al.  Modified angström exponent for the characterization of submicrometer aerosols. , 2001, Applied optics.

[13]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[14]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[15]  Steven Platnick,et al.  Fog‐ and cloud‐induced aerosol modification observed by the Aerosol Robotic Network (AERONET) , 2012 .

[16]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[17]  A. Berjón,et al.  A new method for nocturnal aerosol measurements with a lunar photometer prototype , 2012 .

[18]  B. Rodríguez Study on the influence of different error sources on sky radiance measurements and inversion-derived aerosol products in the frame of aeronet , 2012 .

[19]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[20]  Ramesh P. Singh,et al.  Optical Properties of Fine/Coarse Mode Aerosol Mixtures , 2010 .

[21]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[22]  Teruyuki Nakajima,et al.  Aerosol optical properties over east Asia determined from ground‐based sky radiation measurements , 2004 .

[23]  K. T. Whitby THE PHYSICAL CHARACTERISTICS OF SULFUR AEROSOLS , 1978 .

[24]  Thomas Carlund,et al.  Overview of Sun photometer measurements of aerosol properties in Scandinavia and Svalbard , 2012 .

[25]  H. Quenzel,et al.  Determination of size distribution of atmospheric aerosol particles from spectral solar radiation measurements , 1970 .

[26]  G. Yamamoto,et al.  Determination of aerosol size distribution from spectral attenuation measurements. , 1969, Applied optics.

[27]  M. Mishchenko,et al.  Absorption and scattering by molecules and particles , 2013 .

[28]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[29]  David Buckingham,et al.  Optical Properties. (Book Reviews: Modern Nonlinear Optics.) , 1994 .

[30]  R. Koelemeijer,et al.  Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe , 2006 .

[31]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[32]  Victoria E. Cachorro,et al.  Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain) , 2009 .

[33]  H. Grassl Determination of aerosol size distributions from spectral attenuation measurements. , 1971, Applied optics.

[34]  Yanfei Wang,et al.  Regularized inversion method for retrieval of aerosol particle size distribution function in W(1,2) space. , 2006, Applied optics.

[35]  D. Tanré,et al.  Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm , 2013 .

[36]  M.,et al.  Aerosol Size Distributions Obtained by Inversion of Spectral Optical Depth Measurements , 1978 .

[37]  Victoria E. Cachorro,et al.  Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment , 2016 .

[38]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[39]  Venkataraman Sivakumar,et al.  Identification and Classification of Different Aerosol Types over a Subtropical Rural Site in Mpumalanga, South Africa: Seasonal Variations as Retrieved from the AERONET Sunphotometer , 2014 .

[40]  Alexander Smirnov,et al.  Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign , 2001 .

[41]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[42]  Didier Tanré,et al.  Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data , 1988 .

[43]  Sundar A. Christopher,et al.  Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil , 1999 .

[44]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[45]  Michael D. King,et al.  Aerosol size distributions obtained by inversion of spectral optical depth measurements , 1978 .

[46]  H. Kieffer,et al.  The Spectral Irradiance of the Moon , 2005 .

[47]  Bruno H. Zimm Light Scattering by Small Particles. Structure of Matter Series. , 1958 .

[48]  C. Liousse,et al.  Aging of savanna biomass burning aerosols: Consequences on their optical properties , 1995 .

[49]  P. Barber Absorption and scattering of light by small particles , 1984 .

[50]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[51]  M. Herman,et al.  Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method. , 2000, Applied optics.

[52]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[53]  R. Kahn,et al.  Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations , 2013 .

[54]  M. King,et al.  Determination of aerosol optical properties from inverse methods , 2013 .

[55]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[56]  D. Diner,et al.  Coordinated airborne, spaceborne, and ground‐based measurements of massive thick aerosol layers during the dry season in southern Africa , 2003 .

[57]  Maurice Herman,et al.  Polarising properties of the aerosols in the north-eastern tropical Atlantic Ocean, with emphasis on the ACE-2 period , 2000 .

[58]  Oleg Dubovik,et al.  GRASP: a versatile algorithm for characterizing the atmosphere , 2014 .

[59]  T. Eck,et al.  Optical Properties of Atmospheric Aerosol in Maritime Environments , 2002 .

[60]  Brian Cairns,et al.  Long-Term Satellite Record Reveals Likely Recent Aerosol Trend , 2007, Science.

[61]  Kinsell L. Coulson,et al.  Polarization and Intensity of Light in the Atmosphere , 1989 .

[62]  R. Santer,et al.  Atmospheric particulate matter (PM) estimation from SeaWiFS imagery , 2007 .

[63]  M. Brauer,et al.  Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. , 2016, Environmental science & technology.

[64]  J. Deluisi,et al.  Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992 , 1994 .

[65]  Y. Kaufman Aerosol optical thickness and atmospheric path radiance , 1993 .

[66]  B. Holben,et al.  The new sun-sky-lunar Cimel CE318-T multiband photometer-a comprehensive performance evaluation , 2015 .

[67]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[68]  Glenn E. Shaw,et al.  Investigations of Atmospheric Extinction Using Direct Solar Radiation Measurements Made with a Multiple Wavelength Radiometer. , 1973 .

[69]  Michaël Sicard,et al.  Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign , 2015 .

[70]  Victoria E. Cachorro,et al.  Retrieval of atmospheric aerosol characteristics from visible extinction data at valladolid (spain) , 1994 .

[71]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[72]  A. Berjón,et al.  Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations , 2013 .

[73]  Oleg Dubovik,et al.  Optimization of Numerical Inversion in Photopolarimetric Remote Sensing , 2004 .

[74]  B. Holben,et al.  High temporal resolution estimates of columnar aerosol microphysical parameters from spectrum of aerosol optical depth by linear estimation: application to long-term AERONET and star-photometry measurements , 2015 .

[75]  Improvements in star photometry for aerosol characterizations , 2011 .

[76]  O. Schrems,et al.  Synchronous polar winter starphotometry and lidar measurements at a High Arctic station , 2015 .

[77]  M. P. Utrillas,et al.  Retrieval of the aerosol size distribution from spectroradiometer measurements at a coastal site in the Mediterranean Sea , 1999 .

[78]  K. V. S. Badarinath,et al.  Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India , 2009 .

[79]  D. Tanré,et al.  Airborne sun photometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar , 2012 .

[80]  Alexander Smirnov,et al.  Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid‐Pacific , 2005 .

[81]  T. Eck,et al.  Bimodal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space , 2001 .

[82]  Zhengqiang Li,et al.  Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements , 2009 .

[83]  J. Pelon,et al.  Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013 , 2015 .

[84]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[85]  Y. Kaufman,et al.  Dynamic aerosol model: Urban/industrial aerosol , 1998 .

[86]  T. Eck,et al.  An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions , 2012 .

[87]  T. Eck,et al.  Atmospheric Aerosol Optical Properties in the Persian Gulf , 2002 .

[88]  C. Junge,et al.  THE SIZE DISTRIBUTION AND AGING OF NATURAL AEROSOLS AS DETERMINED FROM ELECTRICAL AND OPTICAL DATA ON THE ATMOSPHERE , 1955 .

[89]  Andrea Mazzino,et al.  Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean , 2015 .

[90]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[91]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[92]  Augustin Mortier Tendances et variabilités de l’aérosol atmosphérique à l’aide du couplage Lidar/Photomètre sur les sites de Lille et Dakar , 2013 .

[93]  Study on the influence of different error sources on sky radiance measurements and inversion-derived aerosol products in the frame of AERONET , 2012 .

[94]  Didier Tanré,et al.  Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data , 2006 .

[95]  Victoria E. Cachorro,et al.  Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain) , 2007 .

[96]  J. Gröbner,et al.  Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET , 2014 .

[97]  Application of Sun/star photometry to derive the aerosol optical depth , 2008 .