Suppression of Spin Pumping at Cu/Cr Interfaces

Motivated by recent reports of spin transport in antiferromagnetic alloys and compounds, we examine spin pumping in ferromagnet/spacer/ferromagnet heterostructures that incorporate Cr, an elemental antiferromagnet. Specifically, we interface thin Cr and Cu films to constitute a Cu/Cr spacer, which separates the ferromagnetic spin-source and spin-sink layers. The Cu/Cr spacer largely suppresses spin pumping – i.e., neither transmitting nor absorbing a significant amount of spin current – even though Cu or Cr alone transmits a sizable spin current. Moreover, we find that the antiferromagnetism of Cr is not essential for suppressing spin pumping. Rather, diverse combinations of spin-transparent metals may form interfaces that suppress spin pumping through a yet undetermined mechanism, such as a giant reduction of the spin-mixing conductance. Our work may stimulate a new perspective on understanding and engineering spin transport in metallic multilayers.

[1]  C. Klewe,et al.  Absorption of transverse spin current in ferromagnetic NiCu: Dominance of bulk dephasing over spin-flip scattering , 2022, Applied Physics Letters.

[2]  G. Sala,et al.  Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures , 2022, 2207.06347.

[3]  B. Zink,et al.  Negative spin Hall angle and large spin-charge conversion in thermally evaporated chromium thin films , 2022, Journal of Applied Physics.

[4]  Erol Girt,et al.  Observation of Pure-Spin-Current Diodelike Effect at the Au/Pt Interface. , 2021, Physical review letters.

[5]  P. Nakarmi,et al.  Room-temperature intrinsic and extrinsic damping in polycrystalline Fe thin films , 2021, Physical Review B.

[6]  Y. Mokrousov,et al.  Orbitronics: Orbital currents in solids , 2021, EPL (Europhysics Letters).

[7]  N. Lee,et al.  Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching , 2021, Communications Physics.

[8]  Kang L. Wang,et al.  Roadmap of Spin–Orbit Torques , 2021, IEEE Transactions on Magnetics.

[9]  R. Buhrman,et al.  Fully Spin-Transparent Magnetic Interfaces Enabled by the Insertion of a Thin Paramagnetic NiO Layer. , 2021, Physical review letters.

[10]  D. Viehland,et al.  Dephasing of transverse spin current in ferrimagnetic alloys , 2021, Physical Review B.

[11]  G. Reiss,et al.  Element-Specific Detection of Sub-Nanosecond Spin-Transfer Torque in a Nanomagnet Ensemble. , 2020, Nano letters.

[12]  A. I. Figueroa,et al.  Element- and Time-Resolved Measurements of Spin Dynamics Using X-ray Detected Ferromagnetic Resonance , 2020, Synchrotron Radiation News.

[13]  Yi Wang,et al.  Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator , 2019, Science.

[14]  C. Pai,et al.  Cr -induced Perpendicular Magnetic Anisotropy and Field-Free Spin-Orbit-Torque Switching , 2019, Physical Review Applied.

[15]  R. Hicken,et al.  Coherent ac spin current transmission across an antiferromagnetic CoO insulator , 2019, Nature Communications.

[16]  J. Shaw,et al.  Co25Fe75Thin Films with Ultralow Total Damping of Ferromagnetic Resonance , 2019, Physical Review Applied.

[17]  D. Ralph,et al.  Effective Spin-Mixing Conductance of Heavy-Metal-Ferromagnet Interfaces. , 2019, Physical review letters.

[18]  Z. Diao,et al.  Spin decoherence independent of antiferromagnetic order in IrMn , 2018, Physical Review B.

[19]  H. Ohno,et al.  Spin transport and spin torque in antiferromagnetic devices , 2018 .

[20]  C. Felser,et al.  The multiple directions of antiferromagnetic spintronics , 2018, Nature Physics.

[21]  D. McComb,et al.  Metallic ferromagnetic films with magnetic damping under 1.4 × 10−3 , 2017, Nature Communications.

[22]  A. Tulapurkar,et al.  Sign Reversal of Fieldlike Spin-Orbit Torque in an Ultrathin Cr /Ni Bilayer , 2017, 1706.07260.

[23]  A. Kent,et al.  Spin transport and dynamics in all-oxide perovskite La 2 / 3 Sr 1 / 3 MnO 3 / SrRuO 3 bilayers probed by ferromagnetic resonance , 2016, 1610.06661.

[24]  A. I. Figueroa,et al.  Spin pumping in magnetic trilayer structures with an MgO barrier , 2016, Scientific Reports.

[25]  J. Heremans,et al.  Spin Seebeck effect through antiferromagnetic NiO , 2016, 1604.08659.

[26]  D. Ralph,et al.  Strong spin Hall effect in the antiferromagnet PtMn , 2016, 1603.08068.

[27]  C. Chien,et al.  Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator. , 2016, Physical review letters.

[28]  A. I. Figueroa,et al.  Anisotropic Absorption of Pure Spin Currents. , 2016, Physical review letters.

[29]  R. Lukaszew Relaxation in Magnetic Materials for Spintronics , 2015 .

[30]  Axel Hoffmann,et al.  Opportunities at the Frontiers of Spintronics , 2015 .

[31]  C. Mewes,et al.  Relaxation in Magnetic Materials for Spintronics , 2015 .

[32]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[33]  L. Vila,et al.  Enhanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition. , 2015, Physical review letters.

[34]  C. Chien,et al.  Inverse spin Hall effect in Cr: Independence of antiferromagnetic ordering , 2015 .

[35]  Fengyuan Yang,et al.  Spin transport in antiferromagnetic insulators mediated by magnetic correlations , 2015, 1509.04336.

[36]  R. Hicken,et al.  Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements. , 2015, Physical review letters.

[37]  Satoshi Okamoto,et al.  Spin-current probe for phase transition in an insulator , 2015, Nature Communications.

[38]  Wei Zhang,et al.  Spin Hall effects in metallic antiferromagnets. , 2014, Physical review letters.

[39]  Fengyuan Yang,et al.  Systematic variation of spin-orbit coupling with d -orbital filling: Large inverse spin Hall effect in 3 d transition metals , 2014 .

[40]  Fengyuan Yang,et al.  Antiferromagnonic spin transport from Y3Fe5O12 into NiO. , 2014, Physical review letters.

[41]  Fengyuan Yang,et al.  Enhancement of Pure Spin Currents in Spin Pumping Y 3 Fe 5 O 12 / Cu / Metal Trilayers through Spin Conductance Matching , 2014, 1405.4775.

[42]  H. Béa,et al.  Penetration depth and absorption mechanisms of spin currents in Ir$_{80}$Mn$_{20}$ and Fe$_{50}$Mn$_{50}$ polycrystalline films by ferromagnetic resonance and spin pumping , 2014 .

[43]  Hyunsoo Yang,et al.  Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures , 2013, 1311.6098.

[44]  W. E. Bailey,et al.  Effect of direct exchange on spin current scattering in Pd and Pt , 2013, 1308.0450.

[45]  T. Silva,et al.  Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin pumping , 2013, 1301.5861.

[46]  S. Auffret,et al.  Penetration depth of transverse spin current in ultrathin ferromagnets. , 2012, Physical review letters.

[47]  S. Gupta,et al.  Unidirectional Magnetization Relaxation in Exchange-Biased Films , 2010, IEEE Magnetics Letters.

[48]  F. Hellman,et al.  Resonant impurity scattering and electron-phonon scattering in the electrical resistivity of Cr thin films , 2009 .

[49]  H. Imamura,et al.  Determination of Penetration Depth of Transverse Spin Current in Ferromagnetic Metals by Spin Pumping , 2007, 0708.3528.

[50]  C. Leighton,et al.  Exchange bias as a probe of the incommensurate spin-density wave in epitaxial Fe/Cr(001). , 2006, Physical review letters.

[51]  W. Pratt,et al.  Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review , 2006, cond-mat/0610085.

[52]  Michael L. Schneider,et al.  Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods , 2006 .

[53]  T. Gerrits,et al.  Enhanced ferromagnetic damping in Permalloy∕Cu bilayers , 2006 .

[54]  B. Halperin,et al.  Nonlocal magnetization dynamics in ferromagnetic heterostructures , 2004, cond-mat/0409242.

[55]  G. Woltersdorf,et al.  Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations , 2004 .

[56]  R. McMichael,et al.  Classical model of extrinsic ferromagnetic resonance linewidth in ultrathin films , 2004, IEEE Transactions on Magnetics.

[57]  A. Brataas,et al.  Dynamic exchange coupling in magnetic bilayers. , 2002, Physical review letters.

[58]  A. Brataas,et al.  Spin pumping and magnetization dynamics in metallic multilayers , 2002, cond-mat/0208091.

[59]  T. Miyazaki,et al.  The Study on Ferromagnetic Resonance Linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) Films , 2001 .

[60]  H. Zabel Magnetism of chromium at surfaces, at interfaces and in thin films , 1999 .

[61]  R. Celotta,et al.  Effect of roughness, frustration, and antiferromagnetic order on magnetic coupling of Fe/Cr multilayers , 1999 .

[62]  M. Stiles,et al.  Ferromagnetic Resonance Linewidth In Thin Films Coupled To NiO , 1998, 7th Joint MMM-Intermag Conference. Abstracts (Cat. No.98CH36275).

[63]  T. Schmitte,et al.  Magnetic Structure of Cr in Exchange Coupled Fe/Cr(001) Superlattices , 1997 .

[64]  G. Harp,et al.  ORIENTATION DEPENDENCE OF INTERLAYER COUPLING AND INTERLAYER MOMENTS IN FE/CR MULTILAYERS , 1997 .

[65]  Fullerton,et al.  Spin-Density-Wave Antiferromagnetism of Cr in Fe/Cr(001) Superlattices. , 1996, Physical review letters.

[66]  Pierce,et al.  Magnetism in Cr thin films on Fe(100). , 1992, Physical review letters.

[67]  B. Heinrich Spin Relaxation in Magnetic Metallic Layers and Multilayers , 2005 .

[68]  A. Scherz,et al.  Limitations of integral XMCD sum-rules for the early 3d elements , 2005 .

[69]  Eric Fawcett,et al.  Spin-density-wave antiferromagnetism in chromium , 1988 .