Experimental investigation of Mg/SiC composite fabrication via friction stir processing

[1]  M. Saeidi,et al.  Investigation on AA5083/AA7075+Al2O3 Joint Fabricated by Friction Stir Welding: Characterizing Microstructure, Corrosion and Toughness Behavior , 2015 .

[2]  Basil M. Darras,et al.  Prediction of Friction Stir Processed AZ31 Magnesium Alloy Micro-Hardness Using Artificial Neural Networks , 2014 .

[3]  Z. Ma,et al.  Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing , 2014 .

[4]  S. Shahraki,et al.  Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP) , 2013, Metallurgical and Materials Transactions B.

[5]  R. Valiev,et al.  Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development , 2013 .

[6]  A. Mostafapour,et al.  The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP , 2013 .

[7]  S. Kashani-Bozorg,et al.  Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing , 2012 .

[8]  M. B. Givi,et al.  Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing , 2012 .

[9]  Dan Mei-Yan,et al.  Processing of AZ31 magnesium alloy by accumulative roll-bonding at gradient temperature , 2012 .

[10]  A. Macke,et al.  Metal Matrix Composites Offer Automotive Industry Opportunity to Reduce Vehicle Weight, Improve Performance , 2012, AM&P Technical Articles.

[11]  Basil M. Darras A Model to Predict the Resulting Grain Size of Friction-Stir-Processed AZ31 Magnesium Alloy , 2012, Journal of Materials Engineering and Performance.

[12]  S. Kashani-Bozorg,et al.  The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer , 2011 .

[13]  D. Apelian,et al.  Friction stir processing of aluminum cast alloys for high performance applications , 2011 .

[14]  Y. Mazaheri,et al.  A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing , 2011 .

[15]  R. Bauri,et al.  Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite , 2011 .

[16]  H. Assadi,et al.  Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing , 2011 .

[17]  I. Uygur,et al.  Surface modification of aluminium by friction stir processing , 2011 .

[18]  Javad Seyfi,et al.  On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior , 2011 .

[19]  Chunping Huang,et al.  Al-Ni intermetallic composites produced in situ by friction stir processing , 2010 .

[20]  R. Mishra,et al.  Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy , 2010 .

[21]  G. Faraji,et al.  Producing of AZ91/SiC composite by friction stir processing (FSP) , 2010 .

[22]  P. Asadi,et al.  Influence of Friction Stir Processing Parameters on the Fabrication of SiC/316L Surface Composite , 2010 .

[23]  Essam R. I. Mahmoud,et al.  Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing , 2010 .

[24]  Y. Gan,et al.  Friction Stir Processing of Particle Reinforced Composite Materials , 2010, Materials.

[25]  V. Chawla,et al.  Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite , 2009 .

[26]  Wei Wang,et al.  A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing , 2009 .

[27]  S. Kashani-Bozorg,et al.  Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing , 2009 .

[28]  T. Langdon,et al.  Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion , 2008 .

[29]  H. Kokawa,et al.  Microstructural evolution during friction stir-processing of pure iron , 2008 .

[30]  H. Miura,et al.  Ultrafine Grain Formation in Ferritic Stainless Steel during Severe Plastic Deformation , 2008 .

[31]  Basil M. Darras,et al.  Analytical Modeling of Strain Rate Distribution During Friction Stir Processing , 2008 .

[32]  T. Mcnelley,et al.  Recrystallization mechanisms during friction stir welding/processing of aluminum alloys , 2008 .

[33]  Basil M. Darras,et al.  Friction stir processing of commercial AZ31 magnesium alloy , 2007 .

[34]  Marwan K. Khraisheh,et al.  Experimental Thermal Analysis of Friction Stir Processing , 2007 .

[35]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[36]  Y. Morisada,et al.  MWCNTs/AZ31 surface composites fabricated by friction stir processing , 2006 .

[37]  T. Langdon,et al.  Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion , 2005 .

[38]  R. Steel,et al.  In situ thermal studies and post-weld mechanical properties of friction stir welds in age hardenable aluminium alloys , 2003 .

[39]  R. Mishra,et al.  Friction stir processing: a novel technique for fabrication of surface composite , 2003 .

[40]  E. Tzimas,et al.  Evolution of near-equiaxed microstructure in the semisolid state , 2000 .

[41]  A. Mukherjee,et al.  High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy , 1999 .

[42]  Zhang Junshan,et al.  GRAIN BOUNDARY FEATURES AND CREEP BEHAVIOR OF Fe-15Cr-25Ni ALLOYS , 1989 .