Numerical investigation on the dynamic behavior of advanced ceramics

Abstract This paper studies the dynamic behavior of advanced ceramics by a finite element model. It implements the direct simulation of fracture and fragmentation together with a mixed-mode cohesive law to describe the fracture process. In particular, we simulate dynamic Brazilian tests performed with a Hopkinson bar, at strain rates ranging from 65 to 89 s −1 , on six different materials: three kinds of alumina with different average grain sizes and degrees of purity, a blend of alumina and zirconia, silicon carbide and boron carbide. The rate dependence of the results emerges explicitly from the calculations, thanks both to the inertia attendant to the fracture process, and to the time effect provided by the cohesive law. Indeed, the simulations give accurate values for the dynamic strength of the six ceramics under study. The simulations also predict the main features of the crack pattern.

[1]  Dinesh K. Shetty,et al.  Mixed-Mode Fracture Criteria for Reliability Analysis and Design With Structural Ceramics , 1987 .

[2]  J. Rödel,et al.  In Situ Measurements of Bridged Crack Interfaces in the Scanning Electron Microscope , 1990 .

[3]  M. Elices,et al.  The equivalent elastic crack: 2. X-Y equivalences and asymptotic analysis , 1993 .

[4]  A. R. Rosenfield,et al.  Mixed-Mode Fracture of Ceramics in Diametral Compression , 1986 .

[5]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .

[6]  M. Ortiz,et al.  The Influence of Grain Size on the Toughness of Monolithic Ceramics , 1993 .

[7]  A. R. Rosenfield,et al.  Mixed-mode fracture in biaxial stress state: Application of the diametral-compression (Brazilian disk) test , 1987 .

[8]  Jaime Planas,et al.  Size effect and boundary conditions in the brazilian test: theoretical analysis , 1999 .

[9]  Ares J. Rosakis,et al.  Three Dimensional Cohesive-Element Analysis and Experiments of Dynamic Fracture in C300 Steel , 2000 .

[10]  Dileep Singh,et al.  Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading , 1989 .

[11]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[12]  P. Krysl,et al.  Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture , 1999 .

[13]  Albert S. Kobayashi,et al.  Process zone of polycrystalline alumina , 1997, Composites and Functionally Graded Materials.

[14]  Michael Ortiz,et al.  Three‐dimensional finite‐element simulation of the dynamic Brazilian tests on concrete cylinders , 2000 .

[15]  Albert S. Kobayashi,et al.  Fracture process zone modeling of monolithic Al2O3 , 1999 .

[16]  M. Ortiz,et al.  Solid modeling aspects of three-dimensional fragmentation , 1998, Engineering with Computers.

[17]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[18]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[19]  M. Elices,et al.  The equivalent elastic crack: 1. Load-Y equivalences , 1993 .

[20]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[21]  M. Ashby,et al.  R-curve behaviour of Al2O3 ceramics , 1990 .

[22]  K. White,et al.  Grain Boundary Phases and Wake Zone Characterization in Monolithic Alumina , 1995 .

[23]  V. Tikare,et al.  Combined Mode I and Mode II Fracture of Monolithic Ceramics , 1993 .

[24]  Jaime Planas,et al.  MECHANISMS OF RUPTURE IN SPLITTING TESTS , 1999 .

[25]  Michael Ortiz,et al.  A three-dimensional analysis of crack trapping and bridging by tough particles , 1991 .

[26]  Jonas A. Zukas,et al.  High velocity impact dynamics , 1990 .

[27]  A. Kobayashi Dynamic fracture of ceramics and ceramic composites , 1991 .

[28]  V. Sánchez-Gálvez,et al.  Splitting tests : an alternative to determine the dynamic tensile strength of ceramic materials , 1994 .

[29]  Jaime Planas,et al.  Size effect and boundary conditions in the Brazilian test: Experimental verification , 1999 .