The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data

Between 2014 and 2016, ESA’s Rosetta OSIRIS cameras acquired multiple-filters images of the layered nucleus of comet 67P/Churyumov–Gerasimenko, ranging from ultraviolet to near-infrared wavelengths. No correlation between layers disposition and surface spectral variegation has been observed so far. This paper investigates possible spectral differences among decametre-thickness outcropping layers of the biggest lobe of the comet by means of OSIRIS image dataset. A two-classes maximum likelihood classification was applied on consolidated outcrops and relative deposits identified on post-perihelion multispectral images of the big lobe. We distinguished multispectral data on the basis of the structural elevation of the onion-shell Ellipsoidal Model of 67P. The spatial distribution of the two classes displays a clear dependence on the structural elevation, with the innermost class resulting over 50 per cent brighter than the outermost one. Consolidated cometarymaterials located at different structural levels are characterized by different brightness and revealed due to the selective removal of large volumes. This variegation can be attributed to a different texture of the outcrop surface and/or to a different content of refractory materials.

[1]  J. Ogilvy Wave scattering from rough surfaces , 1987 .

[2]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[3]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[4]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[5]  G. Arnold,et al.  Near-infrared reflectance spectroscopy of bulk analog materials for planetary crust , 2001 .

[6]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[7]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[8]  U. Fink,et al.  Virtis: An Imaging Spectrometer for the Rosetta Mission , 2007 .

[9]  Y. Shkuratov,et al.  Optical measurements of the Moon as a tool to study its surface , 2011 .

[10]  J. Ortiz,et al.  67P/Churyumov-Gerasimenko at large heliocentric distance , 2011 .

[11]  K. Wada,et al.  Static compression of porous dust aggregates , 2013, 1303.3351.

[12]  Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations , 2015, 1505.07021.

[13]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[14]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[15]  S. Debei,et al.  Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015 .

[16]  D. Plettemeier,et al.  CONSERT suggests a change in local properties of 67P/Churyumov-Gerasimenko's nucleus at depth , 2015 .

[17]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[18]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Regional surface morphology of comet 67 P / Churyumov-Gerasimenko from Rosetta / OSIRIS images ? , 2015 .

[19]  S. Debei,et al.  Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft , 2015, 1505.06888.

[20]  S. Debei,et al.  The primordial nucleus of comet 67P/Churyumov-Gerasimenko , 2015 .

[21]  S. Debei,et al.  Two independent and primitive envelopes of the bilobate nucleus of comet 67P , 2015, Nature.

[22]  D. Plettemeier,et al.  Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar , 2015, Science.

[23]  T. Spohn,et al.  Comet 67P/Churyumov-Gerasimenko: hardening of the sub-surface layer. , 2015 .

[24]  S. Debei,et al.  Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse , 2015, Nature.

[25]  S. Erard,et al.  The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[26]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Scientific assessment of the quality of OSIRIS images , 2015 .

[27]  S. Debei,et al.  Geomorphology and spectrophotometry of Philae’s landing site on comet 67P/Churyumov-Gerasimenko , 2015 .

[28]  S. Debei,et al.  Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images , 2016 .

[29]  S. Debei,et al.  Geologic mapping of the Comet 67P/Churyumov-Gerasimenko's Northern Hemisphere , 2016 .

[30]  S. Debei,et al.  Gas outflow and dust transport of comet 67P Churyumov Gerasimenko , 2016 .

[31]  Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere , 2016 .

[32]  P. Drossart,et al.  Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko - as observed by Rosetta OSIRIS and VIRTIS instruments , 2016 .

[33]  S. Debei,et al.  Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements , 2016 .

[34]  S. Debei,et al.  Summer fireworks on comet 67P , 2016, 1609.07743.

[35]  S. Debei,et al.  Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko , 2016 .

[36]  S. Debei,et al.  Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity , 2016 .

[37]  S. Debei,et al.  Geomorphological mapping of comet 67P/Churyumov-Gerasimenko's Southern hemisphere , 2016 .

[38]  S. Erard,et al.  Detection of exposed H₂O ice on the nucleus of comet 67P/Churyumov-Gerasimenko , 2016, 1609.00551.

[39]  S. Debei,et al.  Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2016, 1611.00012.

[40]  S. Debei,et al.  The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations , 2016 .

[41]  S. Debei,et al.  The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m , 2016 .

[42]  S. Debei,et al.  Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko , 2017, 1707.06812.

[43]  S. Debei,et al.  Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images , 2017 .

[44]  A. Johansen,et al.  Radially resolved simulations of collapsing pebble clouds in protoplanetary discs , 2017, 1706.03655.

[45]  S. Debei,et al.  Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko , 2017 .

[46]  W. Benz,et al.  Formation of bi-lobed shapes by sub-catastrophic collisions. A late origin of comet 67P's structure , 2016, 1611.02615.

[47]  A. Johansen,et al.  Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles , 2017, 1710.07846.

[48]  S. Debei,et al.  The Opposition Effect of 67P/Churyumov-Gerasimenko on post-perihelion Rosetta images , 2017 .

[49]  S. Debei,et al.  The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations , 2017, 1707.02945.

[50]  S. Debei,et al.  The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse , 2017, Nature Astronomy.

[51]  S. Debei,et al.  Long-term survival of surface water ice on comet 67P , 2017 .

[52]  S. Debei,et al.  A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko , 2017 .

[53]  S. Debei,et al.  The pebbles/boulders size distributions on Sais: Rosetta’s final landing site on comet 67P/Churyumov–Gerasimenko , 2017 .

[54]  S. Debei,et al.  Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution , 2018 .

[55]  B. V. Semenov,et al.  A look towards the future in the handling of space science mission geometry , 2018 .