3D semantic labeling of ALS point clouds by exploiting multi-scale, multi-type neighborhoods for feature extraction

The semantic labeling of 3D point clouds acquired via airborne laser scanning typically relies on the use of geometric features. In this paper, we present a framework considering complementary types of geometric features extracted from multi-scale, multi-type neighborhoods to describe (i) the local 3D structure for neighborhoods of different scale and type and (ii) how the local 3D structure behaves across different scales and across different neighborhood types. The derived features are provided as input for several classifiers with different learning principles in order to show the potential and limitations of the proposed geometric features with respect to the classification task. To allow a comparison of the performance of our framework to the performance of existing and future approaches, we evaluate our framework on the publicly available dataset provided for the ISPRS benchmark on 3D semantic labeling.

[1]  Hartmut Prautzsch,et al.  Local Versus Global Triangulations , 2001, Eurographics.

[2]  Impyeong Lee,et al.  PERCEPTUAL ORGANIZATION OF 3D SURFACE POINTS , 2002 .

[3]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[4]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[5]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[6]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[7]  Chao Chen,et al.  Using Random Forest to Learn Imbalanced Data , 2004 .

[8]  James R. Lersch,et al.  Context-driven automated target detection in 3D data , 2004, SPIE Defense + Commercial Sensing.

[9]  G. Sithole,et al.  Recognising structure in laser scanning point clouds , 2004 .

[10]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[11]  N. Pfeifer,et al.  Neighborhood systems for airborne laser data , 2005 .

[12]  David P. Helmbold,et al.  Aerial LiDAR Data Classification Using Support Vector Machines (SVM) , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[13]  Thomas Melzer,et al.  Non-parametric segmentation of ALS point clouds using mean shift , 2007 .

[14]  David P. Helmbold,et al.  Aerial Lidar Data Classification using AdaBoost , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[15]  Nico Blodow,et al.  Persistent Point Feature Histograms for 3D Point Clouds , 2008 .

[16]  C. Mallet,et al.  AIRBORNE LIDAR FEATURE SELECTION FOR URBAN CLASSIFICATION USING RANDOM FORESTS , 2009 .

[17]  B. Jutzi,et al.  NEAREST NEIGHBOUR CLASSIFICATION ON LASER POINT CLOUDS TO GAIN OBJECT STRUCTURES FROM BUILDINGS , 2009 .

[18]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[19]  Michael Cramer,et al.  The DGPF-Test on Digital Airborne Camera Evaluation - Over- view and Test Design , 2010 .

[20]  O. Barinova,et al.  NON-ASSOCIATIVE MARKOV NETWORKS FOR 3D POINT CLOUD CLASSIFICATION , 2010 .

[21]  Uwe Soergel,et al.  Relevance assessment of full-waveform lidar data for urban area classification , 2011 .

[22]  Samia Boukir,et al.  Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests , 2011 .

[23]  Dimitri Lague,et al.  3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology , 2011, ArXiv.

[24]  Markus Gerke,et al.  The ISPRS benchmark on urban object classification and 3D building reconstruction , 2012 .

[25]  J. Demantké,et al.  DIMENSIONALITY BASED SCALE SELECTION IN 3D LIDAR POINT CLOUDS , 2012 .

[26]  S. J. Oude Elberink,et al.  Role of dimensionality reduction in segment - based classsification of damaged building roofs in ariborne laser scanning data , 2012 .

[27]  Martial Hebert,et al.  Efficient 3-D scene analysis from streaming data , 2013, 2013 IEEE International Conference on Robotics and Automation.

[28]  Antonio Criminisi,et al.  Decision Forests for Computer Vision and Medical Image Analysis , 2013, Advances in Computer Vision and Pattern Recognition.

[29]  Boris Jutzi,et al.  Feature relevance assessment for the semantic interpretation of 3D point cloud data , 2013 .

[30]  G. Vosselman Point cloud segmentation for urban scene classification , 2013 .

[31]  S. J. Oude Elberink,et al.  Multiple-entity based classification of airborne laser scanning data in urban areas , 2014 .

[32]  Boris Jutzi,et al.  SHAPE DISTRIBUTION FEATURES FOR POINT CLOUD ANALYSIS - A GEOMETRIC HISTOGRAM APPROACH ON MULTIPLE SCALES , 2014 .

[33]  J. Niemeyer,et al.  Contextual classification of lidar data and building object detection in urban areas , 2014 .

[34]  Uwe Soergel,et al.  Contextual Classification of Full Waveform Lidar Data in the Wadden Sea , 2014, IEEE Geoscience and Remote Sensing Letters.

[35]  Stefan Hinz,et al.  Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers , 2015 .

[36]  Fan Zhang,et al.  Classification of airborne laser scanning data using JointBoost , 2015 .

[37]  Stefan Hinz,et al.  CONTEXTUAL CLASSIFICATION OF POINT CLOUD DATA BY EXPLOITING INDIVIDUAL 3D NEIGBOURHOODS , 2015 .

[38]  Boris Jutzi,et al.  CLASSIFICATION OF AIRBORNE LASER SCANNING DATA USING GEOMETRIC MULTI-SCALE FEATURES AND DIFFERENT NEIGHBOURHOOD TYPES , 2016 .

[39]  Martin Weinmann,et al.  Book Review–Reconstruction and Analysis of 3D Scenes: From Irregularly Distributed 3D Points to Object Classes , 2016, Photogrammetric Engineering & Remote Sensing.