Durability of PEM water electrolyzer against wind power voltage fluctuation

[1]  H. Gasteiger,et al.  Durability Testing of Low-Iridium PEM Water Electrolysis Membrane Electrode Assemblies , 2022, Journal of The Electrochemical Society.

[2]  S. Alia,et al.  Electrolyzer Performance Loss from Accelerated Stress Tests and Corresponding Changes to Catalyst Layers and Interfaces , 2022, Journal of The Electrochemical Society.

[3]  A. Lanzini,et al.  Optimal design of stand-alone solutions based on RES + hydrogen storage feeding off-grid communities , 2021 .

[4]  K. Sasaki,et al.  Durability Analysis on PEM Water Electrolyzers against the Voltage Fluctuation of Wind Power , 2020, ECS Meeting Abstracts.

[5]  P. Strasser,et al.  Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers , 2020, ACS Applied Energy Materials.

[6]  H. Gasteiger,et al.  Current Challenges in Catalyst Development for PEM Water Electrolyzers , 2020, Chemie Ingenieur Technik.

[7]  S. Alia,et al.  Electrolyzer Durability at Low Catalyst Loading and with Dynamic Operation , 2019, Journal of The Electrochemical Society.

[8]  H. Gasteiger,et al.  OER Catalyst Stability Investigation Using RDE Technique: A Stability Measure or an Artifact? , 2019, Journal of The Electrochemical Society.

[9]  H. Gasteiger,et al.  Impact of Intermittent Operation on Lifetime and Performance of a PEM Water Electrolyzer , 2018, Journal of The Electrochemical Society.

[10]  K. Sasaki,et al.  Development and Evaluation of Ir Based Anode Electrocatalysts for Water Electrolysis , 2018, ECS Transactions.

[11]  B. Shen,et al.  Heat transfer enhancement of a loop thermosyphon with a hydrophobic spot-coated surface , 2018 .

[12]  D. Wilkinson,et al.  Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells , 2017 .

[13]  Qi Feng,et al.  A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies , 2017 .

[14]  A. Aricò,et al.  The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis , 2017 .

[15]  D. Wilkinson,et al.  The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. , 2017, Angewandte Chemie.

[16]  Nicolas Guillet,et al.  Investigation on the degradation of MEAs for PEM water electrolysers part I: Effects of testing conditions on MEA performances and membrane properties , 2016 .

[17]  Simon Geiger,et al.  Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically grown hydrous iridium oxide , 2016 .

[18]  K. Mayrhofer,et al.  Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction , 2016 .

[19]  Alfred Ludwig,et al.  Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability , 2016 .

[20]  Bryan S. Pivovar,et al.  Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction , 2015 .

[21]  Peter Strasser,et al.  Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00518c Click here for additional data file. , 2015, Chemical science.

[22]  Aleksandar R. Zeradjanin,et al.  Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment , 2014 .

[23]  M. Busch,et al.  Revisiting the Redox Properties of Hydrous Iridium Oxide Films in the Context of Oxygen Evolution , 2013 .

[24]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[25]  K. Ayers,et al.  Fueling Vehicles with Sun and Water , 2013 .

[26]  M. Marengo,et al.  Influence of the wettability on the boiling onset. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[27]  Sukhvinder P.S. Badwal,et al.  Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source , 2010 .

[28]  P. Seferlis,et al.  Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage , 2009 .

[29]  John Andrews,et al.  Direct coupling of an electrolyser to a solar PV system for generating hydrogen , 2009 .

[30]  Hubert A. Gasteiger,et al.  Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs , 2007 .

[31]  M. J. Khan,et al.  Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland , 2005 .

[32]  K. Agbossou,et al.  Renewable energy systems based on hydrogen for remote applications , 2001 .

[33]  R. Kötz,et al.  Anodic Iridium Oxide Films XPS‐Studies of Oxidation State Changes and , 1984 .

[34]  Marcel Pourbaix,et al.  Applications of electrochemistry in corrosion science and in practice , 1974 .