Anatomical and functional plasticity in early blind individuals and the mixture of experts architecture

As described elsewhere in this special issue, recent advances in neuroimaging over the last decade have led to a rapid expansion in our knowledge of anatomical and functional correlations within the normal and abnormal human brain. Here, we review how early blindness has been used as a model system for examining the role of visual experience in the development of anatomical connections and functional responses. We discuss how lack of power in group comparisons may provide a potential explanation for why extensive anatomical changes in cortico-cortical connectivity are not observed. Finally we suggest a framework—cortical specialization via hierarchical mixtures of experts—which offers some promise in reconciling a wide range of functional and anatomical data.

[1]  M. Ptito,et al.  Alterations of the visual pathways in congenital blindness , 2008, Experimental Brain Research.

[2]  M. Raichle,et al.  Resting state functional connectivity in early blind humans , 2014, Front. Syst. Neurosci..

[3]  Chunshui Yu,et al.  Whole brain functional connectivity in the early blind. , 2007, Brain : a journal of neurology.

[4]  R. Zatorre,et al.  Voice perception in blind persons: A functional magnetic resonance imaging study , 2009, Neuropsychologia.

[5]  Yunjie Tong,et al.  Tracking cerebral blood flow in BOLD fMRI using recursively generated regressors , 2014, Human brain mapping.

[6]  Brian A. Wandell,et al.  Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure , 2011, NeuroImage.

[7]  R. Zatorre,et al.  A Functional Neuroimaging Study of Sound Localization: Visual Cortex Activity Predicts Performance in Early-Blind Individuals , 2005, PLoS biology.

[8]  Amir Amedi,et al.  Visual Cortex Extrastriate Body-Selective Area Activation in Congenitally Blind People “Seeing” by Using Sounds , 2014, Current Biology.

[9]  P Heggelund,et al.  Postnatal development of glutamatergic, GABAergic, and cholinergic neurotransmitter phenotypes in the visual cortex, lateral geniculate nucleus, pulvinar, and superior colliculus in cats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  L. Krubitzer,et al.  Early blindness results in abnormal corticocortical and thalamocortical connections , 2006, Neuroscience.

[11]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[12]  Timothy Edward John Behrens,et al.  Reliable identification of the auditory thalamus using multi-modal structural analyses , 2006, NeuroImage.

[13]  Franco Lepore,et al.  Early- and Late-Onset Blind Individuals Show Supra-Normal Auditory Abilities in Far-Space , 2004, Current Biology.

[14]  Karl J. Friston,et al.  Early visual deprivation induces structural plasticity in gray and white matter , 2005, Current Biology.

[15]  A. Kirkwood,et al.  Dark Rearing Alters the Development of GABAergic Transmission in Visual Cortex , 2002, The Journal of Neuroscience.

[16]  Á. Pascual-Leone,et al.  The metamodal organization of the brain. , 2001, Progress in brain research.

[17]  M. Paré,et al.  Early-blind human subjects localize sound sources better than sighted subjects , 1998, Nature.

[18]  H. Petropoulos,et al.  Neurochemical changes within human early blind occipital cortex , 2013, Neuroscience.

[19]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[20]  Ione Fine,et al.  Enhanced cortical representation of auditory frequency as a result of early blindness , 2014 .

[21]  Van Boven RW,et al.  Tactile spatial resolution in blind braille readers(1) , 2000, American journal of ophthalmology.

[22]  Apollodorus,et al.  Apollodorus: The Library , 2010 .

[23]  A. Volder,et al.  Brain energy metabolism in early blind subjects: neural activity in the visual cortex , 1997, Brain Research.

[24]  A. Volder,et al.  Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset , 1990, Brain Research.

[25]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[26]  L. Benevento,et al.  Gamma-aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats , 1995, Brain Research.

[27]  Robert A. Jacobs,et al.  Nature, nurture, and the development of functional specializations: A computational approach , 1997 .

[28]  Carlo Alberto Marzi,et al.  Interhemispheric transfer following callosotomy in humans: Role of the superior colliculus , 2007, Neuropsychologia.

[29]  J. Olavarria,et al.  Neonatal enucleation during a critical period reduces the precision of cortico-cortical projections in visual cortex , 2011, Neuroscience Letters.

[30]  Yong Liu,et al.  Altered Anatomical Network in Early Blindness Revealed by Diffusion Tensor Tractography , 2009, PloS one.

[31]  J. Olavarria,et al.  Comparison of the patterns of callosal connections in lateral parietal cortex of the rat, mouse and hamster , 1995, Anatomy and Embryology.

[32]  R. Saxe,et al.  Language processing in the occipital cortex of congenitally blind adults , 2011, Proceedings of the National Academy of Sciences.

[33]  E. R Gizewski,et al.  Cross-modal plasticity for sensory and motor activation patterns in blind subjects , 2003, NeuroImage.

[34]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[35]  Chunshui Yu,et al.  Altered functional connectivity of primary visual cortex in early blindness , 2008, Human brain mapping.

[36]  Á. Pascual-Leone,et al.  Tactile spatial resolution in blind Braille readers , 2000, Neurology.

[37]  William M. Stern,et al.  Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex , 2007, Nature Neuroscience.

[38]  Leah Krubitzer,et al.  Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. , 2009, Cerebral cortex.

[39]  A. Caramazza,et al.  Category-Specific Organization in the Human Brain Does Not Require Visual Experience , 2009, Neuron.

[40]  M. Stewart,et al.  Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex , 2012, Neuroscience.

[41]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[42]  R. Malach,et al.  Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind , 2003, Nature Neuroscience.

[43]  Rebecca Saxe,et al.  Sensitive Period for a Multimodal Response in Human Visual Motion Area MT/MST , 2010, Current Biology.

[44]  Miguel Angel Guevara,et al.  Role of corpus callosum in interhemispheric coherent activity during sleep , 2006, Clinical Neurophysiology.

[45]  Scott T. Grafton,et al.  Structural foundations of resting-state and task-based functional connectivity in the human brain , 2013, Proceedings of the National Academy of Sciences.

[46]  M. Raichle,et al.  Adaptive changes in early and late blind: a fMRI study of Braille reading. , 2002, Journal of neurophysiology.

[47]  N. Harel,et al.  Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. , 2002, Cerebral cortex.

[48]  A. Cowey,et al.  Early Auditory Processing in Area V5/MT+ of the Congenitally Blind Brain , 2013, The Journal of Neuroscience.

[49]  J. Olavarria,et al.  Retinal influences specify cortico‐cortical maps by postnatal day six in rats and mice , 2003, The Journal of comparative neurology.

[50]  J Trabka,et al.  [Role of the corpus callosum]. , 1968, Acta physiologica Polonica.

[51]  Omar H. Butt,et al.  The Fine-Scale Functional Correlation of Striate Cortex in Sighted and Blind People , 2013, The Journal of Neuroscience.

[52]  C. Michel,et al.  High metabolic activity in the visual cortex of early blind human subjects , 1988, Brain Research.

[53]  Jonathan S. Adelstein,et al.  Residual functional connectivity in the split-brain revealed with resting-state functional MRI , 2008, Neuroreport.

[54]  Tianzi Jiang,et al.  The Development of Visual Areas Depends Differently on Visual Experience , 2013, PloS one.

[55]  H. Killackey,et al.  Phenotypic characterisation of respecified visual cortex subsequent to prenatal enucleation in the monkey: Development of acetylcholinesterase and cytochrome oxidase patterns , 1996, The Journal of comparative neurology.

[56]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[57]  Abraham Z. Snyder,et al.  Human Connectome Project informatics: Quality control, database services, and data visualization , 2013, NeuroImage.

[58]  Kurt E. Weaver,et al.  Attention and Sensory Interactions within the Occipital Cortex in the Early Blind: An fMRI Study , 2007, Journal of Cognitive Neuroscience.

[59]  Aaron S. Andalman,et al.  Vision Following Extended Congenital Blindness , 2006, Psychological science.

[60]  Tanya Orlov,et al.  Superior Serial Memory in the Blind: A Case of Cognitive Compensatory Adjustment , 2007, Current Biology.

[61]  L. Merabet,et al.  The plastic human brain cortex. , 2005, Annual review of neuroscience.

[62]  Nicola Filippini,et al.  Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex. , 2012, Brain : a journal of neurology.

[63]  Ione Fine,et al.  Auditory motion processing after early blindness. , 2014, Journal of vision.

[64]  Chunshui Yu,et al.  Neural Pathways Conveying Novisual Information to the Visual Cortex , 2013, Neural plasticity.

[65]  Alexander G. Huth,et al.  Visual Motion Area MT+/V5 Responds to Auditory Motion in Human Sight-Recovery Subjects , 2008, The Journal of Neuroscience.

[66]  M. Hallett,et al.  Activation of the primary visual cortex by Braille reading in blind subjects , 1996, Nature.

[67]  A. Cowey,et al.  Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex. , 2009, Brain : a journal of neurology.

[68]  Joseph N. Wilson,et al.  Twenty Years of Mixture of Experts , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[69]  Niraj S. Desai,et al.  Critical periods for experience-dependent synaptic scaling in visual cortex , 2002, Nature Neuroscience.

[70]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[71]  M. Frank,et al.  Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. , 2012, Cerebral cortex.

[72]  Nicola Vanello,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[73]  Richard F. Betzel,et al.  Resting-brain functional connectivity predicted by analytic measures of network communication , 2013, Proceedings of the National Academy of Sciences.

[74]  Daniela Bonino,et al.  Increased BOLD Variability in the Parietal Cortex and Enhanced Parieto-Occipital Connectivity during Tactile Perception in Congenitally Blind Individuals , 2012, Neural plasticity.

[75]  Henry Kennedy,et al.  Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input , 1989, Nature.

[76]  M. Crawford,et al.  The sensitive period. , 1979, Transactions of the ophthalmological societies of the United Kingdom.

[77]  P. Bandettini,et al.  The effect of respiration variations on independent component analysis results of resting state functional connectivity , 2008, Human brain mapping.

[78]  Robert A. Jacobs,et al.  Encoding Shape and Spatial Relations: The Role of Receptive Field Size in Coordinating Complementary Representations , 1994, Cogn. Sci..

[79]  F. Rösler,et al.  Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. , 2001, Brain research. Cognitive brain research.

[80]  Alexander A. Stevens,et al.  Preparatory Activity in Occipital Cortex in Early Blind Humans Predicts Auditory Perceptual Performance , 2007, The Journal of Neuroscience.

[81]  G. Innocenti,et al.  Analysis of an Experimental Cortical Network: ii) Connections of Visual Areas 17 and 18 After Neonatal Injections of Ibotenic Acid , 1991, Journal of neural transplantation & plasticity.

[82]  Yunjie Tong,et al.  Evaluating the effects of systemic low frequency oscillations measured in the periphery on the independent component analysis results of resting state networks , 2013, NeuroImage.

[83]  M. Raichle,et al.  Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. , 2002, Journal of neurophysiology.

[84]  Henry Kennedy,et al.  Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: Effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex , 1996, The Journal of comparative neurology.

[85]  D. Hubel,et al.  Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. , 1965, Journal of neurophysiology.

[86]  D. Hubel,et al.  Extent of recovery from the effects of visual deprivation in kittens. , 1965, Journal of neurophysiology.

[87]  Robert A. Jacobs,et al.  Encoding Shape and Spatial Relations: The Role of -Receptive Field Size in Coordinating Complementary Representations , 1994 .

[88]  M. Ptito,et al.  Compensatory plasticity and cross-modal reorganization following early visual deprivation , 2014, Neuroscience & Biobehavioral Reviews.

[89]  Á. Pascual-Leone,et al.  Tactile spatial resolution in blind Braille readers , 2000, Neurology.

[90]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[91]  Ingrid M. Kanics,et al.  Tactile Acuity is Enhanced in Blindness , 2003, The Journal of Neuroscience.

[92]  H. Burton,et al.  Cortical activity to vibrotactile stimulation: An fMRI study in blind and sighted individuals , 2004, Human brain mapping.

[93]  Franco Lepore,et al.  Tactile acuity in the blind: A closer look reveals superiority over the sighted in some but not all cutaneous tasks , 2009, Neuropsychologia.

[94]  Timothy Edward John Behrens,et al.  Training induces changes in white matter architecture , 2009, Nature Neuroscience.

[95]  Claude Lepage,et al.  Structural changes after videogame practice related to a brain network associated with intelligence , 2012 .

[96]  Jurate Lasiene,et al.  Topography and axon arbor architecture in the visual callosal pathway: effects of deafferentation and blockade of N-methyl-D-aspartate receptors. , 2008, Biological research.

[97]  J. Olavarria,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[98]  S. Hillyard,et al.  Improved auditory spatial tuning in blind humans , 1999, Nature.

[99]  Amir Amedi,et al.  Reading with Sounds: Sensory Substitution Selectively Activates the Visual Word Form Area in the Blind , 2012, Neuron.

[100]  Ione Fine,et al.  Mechanisms of cross-modal plasticity in early-blind subjects. , 2010, Journal of neurophysiology.

[101]  A. Snyder,et al.  Diffusion tensor imaging reveals white matter reorganization in early blind humans. , 2006, Cerebral cortex.

[102]  Leah Krubitzer,et al.  Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[103]  M. Steiner,et al.  Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans , 1993, Neuroscience Letters.

[104]  D. Hubel,et al.  EFFECTS OF VISUAL DEPRIVATION ON MORPHOLOGY AND PHYSIOLOGY OF CELLS IN THE CATS LATERAL GENICULATE BODY. , 1963, Journal of neurophysiology.

[105]  R. Malach,et al.  Development of visual callosal connections in neonatally enucleated rats , 1987, The Journal of comparative neurology.

[106]  Andrew S. Bock,et al.  Visual callosal topography in the absence of retinal input , 2013, NeuroImage.

[107]  G. Vandewalle,et al.  Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humans , 2011, Proceedings of the National Academy of Sciences.

[108]  Ethan M. Meyers,et al.  Visual Parsing After Recovery From Blindness , 2009, Psychological science.

[109]  Pavel Zahorik,et al.  Decoding the direction of auditory motion in blind humans , 2011, NeuroImage.

[110]  Giorgio M. Innocenti,et al.  Exuberance in the development of cortical networks , 2005, Nature Reviews Neuroscience.

[111]  Sachin Dixit,et al.  Working memory for vibrotactile frequencies: Comparison of cortical activity in blind and sighted individuals , 2010, Human brain mapping.

[112]  Chunshui Yu,et al.  Abnormal diffusion of cerebral white matter in early blindness , 2009, Human brain mapping.

[113]  Daniel P. Kennedy,et al.  Intact Bilateral Resting-State Networks in the Absence of the Corpus Callosum , 2011, The Journal of Neuroscience.

[114]  C D Kroenke,et al.  Retinal input influences the size and corticocortical connectivity of visual cortex during postnatal development in the ferret , 2012, The Journal of comparative neurology.

[115]  R. Saxe,et al.  A sensitive period for language in the visual cortex: Distinct patterns of plasticity in congenitally versus late blind adults , 2011, Brain and Language.

[116]  Jun Li,et al.  Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography , 2007, NeuroImage.

[117]  G. Sandini,et al.  Impairment of auditory spatial localization in congenitally blind human subjects , 2013, Brain : a journal of neurology.

[118]  Lutz Jäncke,et al.  Training-Induced Neural Plasticity in Golf Novices , 2011, The Journal of Neuroscience.

[119]  M. Hallett,et al.  Neural networks for Braille reading by the blind. , 1998 .

[120]  E. Zohary,et al.  V1 activation in congenitally blind humans is associated with episodic retrieval. , 2005, Cerebral cortex.

[121]  D. Heumann,et al.  Postnatal development of the visual cortex of the mouse after enucleation at birth , 2004, Experimental Brain Research.

[122]  R. Näätänen,et al.  Cross-modal reorganization of human cortical functions , 2000, Trends in Neurosciences.

[123]  Alex R. Wade,et al.  Long-term deprivation affects visual perception and cortex , 2003, Nature Neuroscience.

[124]  Ning Yang,et al.  Greater Than the Sum of Its Parts , 2010, IEEE Microwave Magazine.

[125]  Anne G. De Volder,et al.  Cortical plasticity and preserved function in early blindness , 2014, Neuroscience & Biobehavioral Reviews.

[126]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[127]  Guy B. Williams,et al.  Inter Subject Variability and Reproducibility of Diffusion Tensor Imaging within and between Different Imaging Sessions , 2013, PloS one.

[128]  Thomas Elbert,et al.  Blind Braille readers mislocate tactile stimuli , 2003, Biological Psychology.

[129]  M. Greicius,et al.  Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity , 2009, Brain Structure and Function.